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Abstract 
We report insights gained from a 
project of enabling natural language 
question answering using information 
stored in RDF repositories targeted to 
mobile phones users. We present ways 
of improving portability of natural 
language interfaces across different data 
domains based on the Natural Query 
(NQ) system. NQ enables portable NLI 
to RDF repositories, can effectively 
rank different semantic interpretations 
of a natural language questions with 
respect to information in RDF 
repository. NQ can retrieve information 
that answers the question and can be 
used for additional explanation, 
disambiguation or guiding the dialog. 
We have successfully applied NQ to 
creating natural language access 
capability for mobile device data and 
for two externally hosted repositories – 
a corporate personnel directory and a 
job search database. 

1 Introduction 

This paper presents selected insights we 
gained from a project of enabling natural 
language question answering using information 
stored in RDF repositories and targeted to 
mobile phones users. Can we treat semantic 
repositories as models for assigning semantics to 
natural language questions? What data structures 
and functionality must be added to data access 
systems in order to maximally automate their 
integration with language interfaces?  

Because we are interested in using language- 
based interaction on mobile devices, our 
research focused on whether it is possible to 
change the architecture of NLIDB in order to 
increase portability, limit computational 

complexity of the language components and 
maximally automate the process of integration 
between language systems and databases. 

We consider the database to be a domain 
model including a limited and controlled amount 
of domain knowledge. We limit the function of 
the language system to dealing with domain 
independent lexicon and grammar while relying 
on the database to provide all necessary 
information for semantic interpretation of 
natural language requests. 

We researched the following questions: 
• What information needs to be stored in the 

database to enable automatic derivation of the 
domain-specific lexicon? 

• What are the principles of ontology/schema 
design that make it possible to infer expected 
linguistic patterns or acceptable grammar for 
referencing information in the database? 

• How to design a query engine that can 
retrieve data only using the information derived 
from the natural language question, in essence 
using underspecified semantic interpretation as a 
query language? 

• How can we use the information in the 
database to disambiguate natural language 
questions (ranking the alternative representation 
of meaning produced by the language 
understanding systems)? 

• What information must be returned by the 
query engine in order to facilitate language 
based interaction (no information, too much 
information, partial satisfaction of query, etc.)? 

The main goal of the work presented in this 
paper was to investigate ways of improving 
portability of natural language interfaces across 
different databases. We have designed and 
implemented the Natural Query system that 
enables portable NLI to RDF repositories, can 
effectively rank different semantic 
interpretations of a natural language questions 
with respect to information in RDF repository. 
NQ can retrieve information that answers the 



question and can be 
used for additional 
explanation, 
disambiguation or 
guiding the dialog. 
We have 
successfully applied 
NQ to creating 
natural language 
access capability for 
mobile device data 
and for two 
externally hosted 
repositories – a 
corporate personnel 
directory and a job 
search database. 

The paper presents analysis of the problem 
(Section 2), explains our solution (Section 3) 
briefly summarizes our experience of applying 
this solution in several domains (Section 4).  

2 Problem Analysis 

We draw many of our examples from the 
system we have built to provide question 
answering over Personal Information 
Management (PIM) repository on a mobile 
phone. Our repository contained information 
about contacts—people and organizations—
including their phone numbers, postal and email 
addresses, and affiliations; calendar information 
including meetings with their locations and 
participants; call logs and messages sent and 
received on the mobile devices, and user 
location information. Figure 1 shows a part of 
the mobile PIM ontology that we used in our 
experiments. 

Let us assume the user asks the system about 
contacts they have in some organization and 
geographical location: 

Who do I know at IBM Ulm? 
Who are my contacts at IBM in Ulm? 
What are the names of my contacts at IBM in 
Ulm? 

In the context of question answering using 
information in the PIM repository the 
operational semantics of these questions can be 
adequately represented with a database query. 
Let us consider how this request would need to 
be posed to an RDF [1] repository shown on 
Figure 1. SPARQL [3] query corresponding to 

our example question over the PIM repository is 
shown below: 
 

SELECT DISTINCT ?person ?givenName 
?familyName 
FROM <http://localhost/pim.rdf> 
WHERE {?person a pim:Person; 
pim:givenName ?givenName; 
pim:familyName ?familyName; 
pim:affiliation ?affiliation; pim:address 
?person_address. 
?affiliation pim:organization ?organization. 
?organization pim:address 
?organization_address; pim:name “IBM”. 
{?person_address pim:locality “Ulm”} 
UNION 
{?organization_address pim:locality 
“Ulm”}} 

Unfortunately in order for a language system 
to generate such semantic representation from 
the original questions, the language system must 
contain a large amount of information about the 
structure of the database and its content. Such 
information includes the facts that according to 
our repository IBM is a name of an organization 
and Ulm is a name of a city, cities can be related 
to organizations through their addresses, 
organizations are related to people through their 
affiliations, people are related to cities through 
their home and office addresses, and all these 
relationships and objects are represented by the 
specific structures and entities of the database. 

Entering such information into a language 
system is a tedious and costly process that is not 
only domain dependent but also is sensitive to 
specific choices of database organization. 

givenName

Person

familyName homeAddress workAddress affiliation

Address

Affiliation

streetpcodelocalityregioncountry

title organization

Organizationname

address

rangerange

range

range

range

Figure 1 Part of Mobile PIM Ontology 



This is a problem of software architecture. It 
should be possible to achieve the partition of 
functionality and information in such a way that 
much of the complexity of linguistic processing 
can be completely separated and independent of 
the specific domain, organization and content of 
the data repository. The rest of the functionality 
can be performed by the second component that 
will carry out the domain dependent parts of 
language analysis and integrate directly with the 
repository utilizing direct access to its structure 
and content. If it were possible to achieve 
seamless integrations of these components it 
would amount to retargetable or portable natural 
language interface to data repositories.  

3 Natural Query System 

Natural Query (NQ) system is our proof of 
concept realization of an architecture that solves 
the problem identified in the previous section.  

We process a natural language question in 
five stages. 

1. semantic tagging 
2. parsing 
3. abstract semantic interpretation 
4. concrete semantic interpretation 
5. heuristic ranking 

3.1 Semantic tagging 
Semantic tagging stage performs two distinct 

functions: value tagging and category tagging. 

3.1.1 Value tagging 

Value tagging marks all multiword tokens in 
the question that correspond to values stored in 
the database. The tags associated with these 
tokens identify the category of the value. Thus 
token “John” would be tagged as 
Person.givenName assuming that the repository 
contains a value “John” associated with the 
givenName property of an object of class 
Person. Value tagging process also includes 
recognition of expressions for regular ordered 
value types such as numbers, time, and date. In 
some cases values in the question may not be 
present in the repository, while being used to 
form interval inclusion questions like in “who 
sent me a dinner invitation last week?” In this 
question “last week” translates into a data 
interval whose end points may or may not be 
present as explicit values in the repository. 

Nevertheless such value expressions will be 
marked with their potential categories. These 
categories include all properties whose values 
range over identified regular type. Syntactically 
both types of value tags look identical. 

3.1.2 Category tagging 

Category tagging identifies potential 
references to database entities such as classes 
and properties. To make this possible some 
lexical and (minimal) grammar information 
must be associated with the database entities. 
We call these annotations of database structure 
“language tags”. 

Language tags are words, expressions, and 
linguistic labels attached to the database 
elements such as classes and properties. 
Multiple tags can be attached to a single element 
and a single tag can be attached to multiple 
elements. We use language tags to generate 
information for language understanding system 
about terms that might be used to refer to the 
information in the database.  
 

Many questions result in multiple possible 
semantic taggings. Some of the ambiguity is 
resolved in the next stage, which is parsing. 

3.2 Parsing 
The parser is automatically configured with 

part of speech information for all category tags. 
This allows us to use a generic parser and 
grammar with little or no domain dependency to 
process semantically tagged utterances. In this 
process the parser accomplishes several 
functions. Taggings that do not produce a parse 
are rejected. If probabilistic model is available, 
alternative parses are ranked accordingly. The 
parser also identifies the focus of the question 
and most probable attachment of the phrases. 

The use of a generic domain-independent 
grammar might be problematic in some domains 
and we are planning to explore generating 
semantic grammar using the organization of the 
database, language tags, and some additional 
grammar annotations associated with the 
database entities. 

3.3 Abstract semantic representation 
For each parse of the question we generate an 

underspecified (abstract) semantic interpretation 



or meaning representation. Thanks to semantic 
tagging, focus and attachment resolutions 
performed by the parser for the example 
question “what are the names of my contacts at 
IBM in Ulm?” we now know that 

1. “Ulm” is a value of a category 
Locality.name 

2. “IBM” is a value of the category 
Organization.name 

3. “contact” is a reference to the class 
Contact 

4. “name” is a reference to one of the 
many name attributes that is attached by 
the parser to the Contact 

This information is sufficient to generate an 
abstract meaning representation shown below 
using binary infix predicates 
that correspond to database 
categories identified by 
semantic tagging process: 

(x name ?v) 
(x type Contact) 
(x Organization.name IBM) 
(x Locality.name Ulm) 

However a straightforward 
interpretation of this 
representation as an RDF query 
that requires binding of 
variables using the facts in the 
repository would not work 
because Contact instances in 
our repository do not have such 
properties as Locality.name or 
Organization.name (but are related 
to these categories through other properties). We 
call this meaning representation underspecified 
because it requires further interpretation before 
the requested action of information retrieval can 
be performed. 

A proper interpretation of this meaning 
representation rests on the notion of 
semantically related entities.  

An RDF database or repository is commonly 
conceptualized as a graph. We consider two 
nodes n1 and n2 of an RDF repository 
semantically related over selected class and 
predicate domain D if there exists a path of 
predicates from D that connects these nodes. 
Specifying a predicate domain allows excluding 
semantic relations over meta domains 
established for example by RDFS predicates or 
to simply separate domains of interest. 

The meaning representation generated at this 
stage is underspecified because it only partially 
specifies the path between two nodes in the 
repository. This partial specification is an 
ordered list of classes and predicates that lie on 
the path but do not cover it and are not 
necessarily adjacent to each other. 

Under the NQ system the interpretation of 
the above meaning representation is “return the 
values of attributes tagged as “name” of an 
instance of the class tagged as “Contact” 
related through properties tagged as 
“Organization.name” and “Locality.name” to 
values “IBM” and “Ulm” respectively”. 

3.4 Concrete semantic representation 
What is missing from the abstract meaning 

representation compared to a formal database 
query is the information about the organization 
of the database. In order to navigate from given 
attributes of an object to the target of the query, 
the system needs to know the specific path that 
must be taken on the database graph. Thus a 
query defines a subgraph with given properties 
some of which are specified in the abstract 
meaning representation of the natural language 
request but not all. 

  
While a SPARQL query defines a connected 

subgraph as illustrated in Figure 2, the abstract 
meaning representation only specifies selected 
nodes and edges of this subgraph. Such nodes 
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Figure 2. Query defines a subgraph 



and edges may be disconnected. In the example 
above the meaning representation contains the 
Contact and the Organization classes as well as 
“Ulm” value of the name property of a Locality 
instance and “IBM” as a value of the name 
property of an instance of Organization class.  

Looking at Figure 2, one can notice that for a 
given set of elements identified by the abstract 
meaning representation it is possible to generate 
a set of possible concrete semantic 
interpretations by searching the database graph. 
Such a set includes all minimal connected 
subgraphs spanning the nodes and arcs (subjects, 
objects and predicates) identified by the abstract 
meaning representation. 

3.5 Ranking 
In most cases there are multiple connected 

subgraphs that span all given elements. 
Therefore we need a way to rank them in terms 
of suitability as a concrete semantic 
interpretation of the question. It is most 
attractive to base such ranking on the structural 
properties of the retrieved subgraphs. It would 
make ranking functionality domain independent 
and portable across different repositories. This is 
only possible if we impose constraints on the 
structure of the database graph itself. In other 
words it is only possible to use the structure of 
the database subgraphs for semantic ranking if 
the structure has semantic significance in the 
first place.  

In fact the notion of semantic relatedness that 
we introduced earlier already attributes meaning 
to the structure of the repository. This meaning 
agrees with common intuition that items 
connected through the database organization are 
also semantically related in the domain. It is 
worthwhile however to make this assumption 
explicit. We call this semantic relatedness rule 
(SRR). 

Another requirement is necessary in order for 
us to deal with asymmetric relations. Let us 
consider a general many-to-many mapping 
between objects of two classes like, for example, 
people and phone numbers. For each person we 
have a set of associated phone numbers and for 
each phone number we have a set of associated 
people. The fact that a person x has a phone 
number y can be either represented with a triple 
(x phone-number y) or a triple (y phone-number 
x). Unless we adopt one of the representations as 

standard there is no way to decide whether a 
subgraph that connects a Phone number and a 
Person instances constitutes an acceptable 
semantic interpretation for questions like “What 
is the phone number of Alex?” or “Whose phone 
number is 888 555 3535?” The distinction 
between the two representations corresponds to 
active vs. passive voice. The first representation 
corresponds to the statement “x owns (or has) 
phone number y”. The second representation 
corresponds to the statement “phone number y 
belongs to (is owned by) x”. 

The same situation may exist when 
representing an asymmetric relation between 
two objects of the same class. What meaning 
does the structure (Jane manager John) 
represent? Does it mean that Jane is a manager 
of John, or John is Jane’s manager?  

In NQ we eliminate this ambiguity of 
representation by requiring that language tags 
that describe a relation be used with active voice 
of verbs. Noun tags correspond to noun phrases 
of verbs is, has, contains.  We call this the active 
voice rule (AVR). 

If the Active Voice Rule is followed in the 
design of ontology, language tags attached to 
properties acquire a well-defined meaning and 
can be used by NQ for semantic interpretation of 
natural language questions.  

The most important hypothesis we explored 
in the design of NQ is that if the ontology is 
“properly” designed, the weight of retrieved 
subgraphs, calculated as the total weight of their 
edges, would negatively correlate with their 
appropriateness as semantic interpretation of the 
question over the given repository. In other 
words more compact subgraph that spans all 
relevant nodes is considered to be a better 
semantic interpretation of a given question. This 
hypothesis suggest the following principle for 
ontology design: if a subject is related to two 
different properties that share a language tag, the 
weight of the edges leading from the subject to 
these properties should be such that the property 
that corresponds to the better semantic 
interpretation of the query binding the property 
tag to a value would have smaller weight (or 
shorter path if we assume that all edges have the 
same weight). 

Consider the interpretation of the question: 
“Who is the director of ABC?”. “Who” is a 
language tag of the properties “first name” and 
“last name” of the class Person, “director” is a 



value of the property “title” of the class 
Affiliation. “ABC” is a value of the property 
“name” of the class Organization. With this 
information we generate the following meaning 
representation: 

(x firstName ?) 
(x lastName ?) 
(x type Person) 
(x Affiliation.title director) 
(x Organization.name ABC) 

This query will return correct results as long 
as a person is only affiliated with a single 
organization and is only related to organizations 
by affiliation. However if there were another 
property in the Person class with the range of 
values in Organization class it could lead to 
incorrect interpretations of the above question.   

We need to differentiate the cases when a 
person has a title of director in their affiliation 
with ABC, when a person has a title of director 
with another organization and is also affiliated 
with ABC, and when a person has a title of 
director with some organization while being 
related to ABC, but not through their affiliation. 
Should we have a need to relate a person to 
organizations by other than affiliation property, 
we have to associate appropriate tags with the 
two properties or assign weights to the edges 
that will help identify the correct interpretation 
of the question. 

Based on our experiments it appears that 
following these three principles allows heuristic 
ranking that matches well our intuition and 
language understanding. 

4 Experiments 

We have used NQ system for question 
answering experiments over semantic 
repositories in several domains. These included: 

• personal information repository on the 
mobile device covering contact information of 
people and organizations, call and message logs, 
and calendar information of meetings, 
reminders, and other events 

• intranet corporate phonebook covering 
contact information of employees, their position 
in the organization, organizational information 
of groups, managers, secretaries, colleagues, etc. 

• CIA World Factbook covering extensive 
information about countries and governments 

• job search repository extracted from an 
internet job search site. 

The most extensive experiment was in the 
job search domain.  The repository contained 
detailed descriptions of over 70,000 job offers. 
We collected more than 5000 different natural 
language questions for the domain. All the 
questions mapped into 300 different queries. All 
queries executed successfully. We verified 
results of 25 queries corresponding to about 200 
questions. Since NQ expressions are 
underspecified queries and their evaluation 
involves heuristic search, it is interesting to 
measure precision and recall capabilities of NQ 
compared to a completely specified queries over 
the same repository. The system demonstrated 
100% precision and close to 100% recall. The 
recall below 100% is due to situations that 
require backtracking. This is currently under 
development and will be supported in the next 
version of NQ. 

5 Conclusions 

We have designed and implemented NQ 
system and tested it in several domains. Our 
experience demonstrates that the system can be 
used to construct portable NLI to semantic 
repositories designed according to a few 
principles of language friendly ontology design. 
We have defined these principles and verified 
them on several ontologies. 

Acknowledgement 
We want to thank Stephanie Seneff of 

MIT/CSAIL for providing her expertise and 
powerful language processing software [2] and 
helping us to construct the question answering 
system described in this paper. 

References 
1. Resource Description Framework, 

http://www.w3.org/RDF/ , 2007. 
2. S. Seneff, E. Hurley, R. Lau, C. Pao, 

P. Schmid, and V. Zue, "GALAXY-
II: A Reference Architecture for 
Conversational System 
Development," Proc. ICSLP 98, 
Sydney, Australia, November 1998. 

3. SPARQL Query Language for RDF, 
http://www.w3.org/TR/rdf-sparql-
query/, 2007.  


