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ABSTRACT 
Assertions have long been used to validate the functionality of 
software systems. Researchers and practitioners have extended 
them for validation of non-functional requirements, such as 
performance. This paper presents the implementation and 
application of the performance assertions in mobile device 
software. When applying performance assertions for such 
systems, we have discovered and resolved a number of issues in 
assertion specification, matching, and evaluation that were 
unresolved in previous research. The paper describes a simple, 
but effective framework geared towards mobile devices that 
allows specification and validation of real world performance 
requirements. 

Categories and Subject Descriptors 
D.2.4 [Software Engineering]: Software/Program 

Verification; C.4 [Performance of Systems]. 

General Terms 
Measurement, Performance, Verification. 

Keywords 
Mobile devices, assertions, performance. 

1. INTRODUCTION 

Assertions have long been used to validate the functionality 
of software systems [3][5][7][13]. Because assertions became a 
well-known and easy to use tool, researchers and practitioners 
tried to extend them for validation of non-functional 
requirements, such as performance. Perl [9][10] proposed to use 
assertions for validation of performance requirements and 
implemented such performance assertion system. Perl’s work 
concentrated on post-mortem assertion checking using trace 
logs. Vetter and Worley [16] extended this work by proposing 
online validation of performance assertions. However, the 
designs of performance assertions in previous work contain a 
number of unresolved issues that hamper performance assertion 
adoption in practice: there is no mechanism for gathering and 

matching performance related events across process 
boundaries; no easily readable and writable assertion formulas 
integrated in the same programming language as the system 
under test; no general way to obtain data used in assertion 
formulas. Our work suggests ways to address these issues.  

Mobile devices contain complex multitasking software 
systems subject to numerous performance requirements. 
Without performance assertions, performance requirements in 
mobile devices are often checked by hand or with ad hoc tools 
that analyze enormous trace log files gathered during system 
execution. Performance assertions in mobile systems allow 
simpler, faster and more precise testing and validation. We 
have adapted and extended previously described assertion 
frameworks to software in mobile devices. 

Performance assertions allow to specify performance 
requirements, map them to the source code and validate them 
during execution. Performance assertions do not provide 
guarantees that performance constraints will be never violated. 
They are tools for testing, not for the formal verification. If the 
software executes without triggering the assertion, it 
successfully passes this test case. However, the assertion may 
still fail in another test case. If it triggers the assertion, the test 
case fails. Failing assertions provide immediate feedback to 
test engineers with localized report on the detected violation, 
which is a large improvement over the post-mortem trace 
analysis that is usually used to check performance constraints. 

Section 2 describes the mobile device domain, performance 
requirements in it and how they can be handled using 
performance assertions. Section 3 describes the issues with 
performance assertions that we encountered and proposes 
possible ways to resolve them. Section 4 presents our approach 
for performance assertions in mobile devices including 
assertion framework implementation. Section 5 discusses 
application of performance assertions to representative 
performance requirements. Section 6 discusses the use of 
performance assertions in mobile software development 
process and explores the application of performance assertions 
in general software. The paper concludes with related and 
future work and conclusions. 

2. MOBILE DEVICE APPLICATION 
DOMAIN 

This section describes the application domain motivating 
our use of performance assertions. Although the ideas explored 
in this paper may have wider application, we are primarily 
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concerned with embedded systems such as mobile phones or 
personal communication devices. Such systems have a number 
of characteristics that make them different from others and thus 
define an application domain.  

Today’s personal communication devices are more than 
voice call terminals. Mobile phones serve as platforms for a 
variety of mobile applications including text and picture 
messaging as well as personal information management, 
including data synchronization with remote servers and desktop 
computers. Many mobile phones today are equipped with 
imaging devices and are capable of taking still images and video 
clips. The images may be sent over wireless networks to other 
phones or may be transferred to a remote server or a desktop 
computer for storage or forwarding. Mobile phones also have a 
number of local connectivity interfaces such as USB, IrDA, and 
Bluetooth that can be used for a variety of applications involving 
local data transfer, remote execution, and other types of 
interaction with surrounding computing resources. For example, 
a phone can serve as a wireless modem for a laptop computer 
over Bluetooth connecting it to wide area network over circuit 
switched data call or GPRS (General Packet Radio Service) 
packet data connection.  

The above description shows that mobile phones host a 
range of communication-centered applications most of which 
have performance constraints at various levels. Some of these 
performance constraints are hard real-time, some of them are 
soft real-time, i.e., they affect the quality of operation perceived 
by users.  

Lower layers of software implementing device drivers or 
protocol stacks have to satisfy constraints set in standards or 
hardware specifications. During GPRS session lower layer 
packets arrive every 10 ms. GSM (Global System for Mobile 
Communications) [4] level 3 signaling standard requires 500 ms 
response to any GSM Layer 3 message. GSM level 2 
performance requirements require response to commands within 
50 ms. GSM-WCDMA (Wideband Code Division Multiple 
Access) handover has 40 ms absolute constraint for completion. 

Middleware and application layers need to satisfy usability 
constraints to optimize UI, minimize audio and video jitter, and 
so on. 10 or 15 frames per second of video should be rendered 
on the device. Opening a scheduled meeting in a calendar 
application should take less than 1 second. 

In this paper we selected some performance requirements 
from lower layers, middleware and applications to use as 
motivating examples. These requirements are close to the 
requirements used for real products. We simplified the 
requirements and slightly changed their time constraints to avoid 
tying them to a concrete product: 

1. During GPRS session lower layer packets arrive every 
10 ms. 

2. GSM level 3 signaling standard requires 500 ms 
response to any GSM Layer 3 message. 

3. GSM level 2 performance requirements require 
response to commands within 50 ms. 

4. GSM-WCDMA handover has 40 ms absolute constraint 
for completion. 

5. Screen redraw should take no more than 10% of the 
time needed to insert an appointment into a calendar 
application 

6. Opening a scheduled meeting in a calendar 
application should take less than 1 second 

7. Opening the calendar application should take less 
than 2 seconds plus 5 ms per each appointment in 
current month 

8. Reading of a file should take at most 10ms multiplied 
by the number of blocks read and multiplied by the 
ratio of total and consecutive blocks in the file 

9. Processing delay of audio frame through voice-over-
IP (VoIP) stack should be less than 20 ms 

10. Voice over IP call setup should be less than X ms 

11. Deleting contacts in the phone book application 
should take less than 1 second plus 5 ms per each 
deleted contact 

12. File copy rate from internal flash memory disk to 
flash card should be at least MinRate kb/s  

The requirements from this list are referred to in other 
sections of this paper by italicized numbers in parentheses: 
(1,3). 

Although some of the requirements listed are soft, catching 
their violations is still important in the testing process, since 
this allows improving the product before it is released to 
customers. Therefore notifications about failed performance 
assertions are very useful for the product development team. 
On the other hand, performance requirements on such complex 
systems as mobile device software are practically impossible to 
verify formally. Even if the verification were possible, it would 
likely show that the system violates the constraints in the worst 
case. For example, it is possible that the applications may fail 
to start in 1 second if a lot of system operations are scheduled 
at the same time. However, such worst-case examples usually 
involve highly unlikely scheduling of different processes and 
threads that occurs very infrequently in practice. Therefore 
performance assertions may be a good alternative to check the 
likely cases of execution during testing process.  

3. EXTENDING PERFORMANCE 
ASSERTION SPECIFICATIONS  

Performance assertions have been proposed and described 
in previous work [9][10][16]. We have attempted to use these 
assertions to validate performance requirements in mobile 
devices. During our analysis of performance assertion 
applicability to mobile devices, we discovered a number of 
issues with previous proposals. We extend the performance 
assertions to resolve these issues.   

For assertions on mobile devices we considered online 
performance assertions, i.e. the assertions that are checked 
during the execution of the software system. Online assertion 
processing allows to halt the system or to notify the test 
engineer as soon as an assertion is violated. This shortens the 



 

testing time in case of assertion violations and provides 
additional clues for the causes of violations. In contrast, offline 
(post-mortem) assertion processing happens after the test. Even 
if assertion violations are found then, the test engineer may not 
remember some significant details that happened during the test, 
which were related to the failed assertion. 

Programming languages with assertions (e.g. C [5], Eiffel 
[7]) usually provide online functional property assertions, which 
is another reason to follow the same model with performance 
assertions. Online performance assertions may have a higher 
overhead than offline assertions if the online processing of the 
assertion constraints costs more than storing the events into non-
volatile memory. Therefore the costs of online processing and 
storing events need to be evaluated. This is possibly a more 
significant issue for performance assertions than for functional 
assertions, since online performance assertions change the 
performance of the same system that they are measuring. 
However, if performance assertions are not triggered in the 
system that is running slower because of the assertion overhead, 
there is additional assurance that the constraints will not be 
violated in a system with assertions removed. If assertions fail, 
there is a chance of a false positive due to assertion overhead, 
but the failure site should be investigated anyway, since it may 
have a too narrow margin to failure. Having said that, 
performance test engineers should be aware of the assertion 
overhead [8] and try to minimize it in testing.  

Another important observation is that mobile device 
software often uses a multitasking client-server model (for 
example, Symbian OS [15] model). Performance requirements 
and therefore assertions in such model often cross process 
boundaries. This means that we have to allow programmers to 
specify cross-process performance constraints. 

Keeping in mind that we are using online performance 
assertions and that cross-process assertions should be available, 
the following subsections describe in detail the issues that have 
to be solved to have a full-fledged performance assertion 
framework in complex software systems. We suggest a number 
of solutions to the issues raised. 

3.1. Assertion specification 
Although discussed in previous work [9][10][16], 

performance assertion specification is very important and needs 
to be revisited to provide a powerful and easy to use mechanism. 

Performance assertions have some properties that make 
them different from functional assertions. Therefore it is 
impossible to just adopt the functional assertion specification 
model. Differently from functional assertions (e.g. in C 
programming language [5]) that are textually located in a single 
place of the source code and executed in a single “place” during 
program execution, performance assertions most of the time 
consist of multiple textual entities that correspond to multiple 
temporal events. Any assertions that have a timing constraint 
between two points of execution in a program need at least two 
entities: the beginning of the assertion and the end of the 
assertion. Vetter and Worley [16] use pa_start and pa_end 
constructs to indicate where assertions start and end. For more 
complex assertions, such as: (5) “Screen redraw should take no 
more than 10% of the time needed to insert an appointment into 

a calendar application”, there needs to be more than two 
different events in the program execution. In this example, the 
assertion needs events that outline the beginning and end of 
each screen redraw procedure as well as the whole appointment 
insertion code. Only using these events the assertion can 
calculate whether the constraint was satisfied. Let us consider 
what information is needed for performance assertion 
specification. Based on these needs, we propose a way to 
specify assertions in section 4. 

3.1.1 Event matching 
pa_start and pa_end constructs by itself are only 

sufficient for simple assertions contained in a single non-
recursive function. However, real-world performance 
requirements can span function and even process boundaries. 
Consider a performance assertion to validate the requirement 
(6) “Opening a scheduled meeting in a calendar application 
should take less than 1 second”. The constructs for the 
beginning and the end of this assertion would belong to 
different processes. To be precise, the beginning of the 
assertion would be in a keyboard interrupt handler while the 
end would be in the calendar application. Alternatively, the 
beginning and end event markers could be placed into the 
window manager code, but even then they would belong to 
different functions and possibly threads. 

Furthermore, the program may contain more than one 
performance assertion at the same time. Because of this, there 
has to be a way to match the correct pa_start construct with 
corresponding pa_end construct. A simplest solution is to 
match using a static performance assertion IDs: 

int someCalendarFunction (…) 
{ 
 … 

pa_start(CALENDAR_EVENT_OPEN, …); 
… 

} 
 
int someOtherCalendarFunction (…) 
{ 
 … 

pa_end(CALENDAR_EVENT_OPEN, …); 
… 

} 
 
This approach provides a unique static assertion name (or 

identification). However, a unique static name is not sufficient 
at all times. There are assertions that need dynamic 
identification. For example, to assert that the time from a GUI 
object creation to its rendering should be limited, we cannot 
just use static assertion IDs:  

int GUIObject::GUIObject (…) 
{ 
 … 

pa_start(GUIOBJECT, …); 
… 

} 
 



 

int GUIObject::Render (…) 
{ 
 … 

pa_end(GUIOBJECT, …); 
… 

} 
 
Multiple GUI objects may be created before rendering any 

single one of them, so the execution may have a number of 
pa_start(GUIOBJECT, …) events before a pa_end(GUIOBJECT, 
…) event. Since there is no identification of the object created, it 
would be impossible to match the correct pa_start event to the 
correct pa_end event. 

Adding dynamic assertion IDs solves this problem: 

int GUIObject::GUIObject (…) 
{ 
 … 

pa_start(GUIOBJECT, GUIObjectID, …); 
… 

} 
 
int GUIObject::Render (…) 
{ 
 … 

pa_end(GUIOBJECT, GUIObjectID, …); 
… 

} 
 
In this case GUIObjectID can be a this pointer to the object 

itself. In general, dynamic IDs can be object IDs, hash values or 
any other unique dynamic identifiers. Dynamic IDs may solve 
the event matching for requirements (1, 2, 3, 5, 6, 8, 11)1. 

Unfortunately, this solution is not always sufficient either. 
Consider the example of a timing constraint on the opening of a 
calendar application ((7) “Opening the calendar application 
should take less than 2 seconds plus 5 ms per each appointment 
in current month”). The opening of the application via clicking 
on its icon in the device generates a software interrupt. The 
interrupt handler has the information about the key pressed, but 
it does not have the information about the application that was 
started. So the interrupt handler may contain the following 
beginning of an assertion: 

void keyboardInterruptHandler (…) 
{ 
 … 

pa_start(START_KEYPRESSED, keyID, …); 
… 

} 
 
This pa_start identifies only the key that was pressed. On the 

other hand the calendar application may contain the following 
assertion end statement: 

                                                                 
1 Whether a certain performance assertion solution is 

applicable to a certain example requirement is dependent on the 
way software is written, so we use expressions “may solve” or 
“may apply” throughout the paper.  

int CalendarApplication::Initialize (…) 
{ 
 … 
 // Application started 

pa_end(CALENDAR_APPLICATION, …); 
… 

} 
 
This end statement only identifies the launched application. 

Now, how can the keyboard event be matched with the 
calendar application initialization when the keyboard event 
handler does not know which application it starts and the 
application does not know which keyboard event started it? In 
the system execution there may be many keyboard events and 
even multiple application initializations. How is it possible to 
match the keyboard event with the corresponding application 
initialization? There has to be an intermediate event that 
provides matching for the two events. This could be a 
statement in the window manager that processes the key 
presses and starts corresponding applications: 

int WindowManager::KeyPressStartApp (…) 
{ 
 … 
 pa_match(START_KEYPRESSED, keyID, 

CALENDAR_APPLICATION, …); 
… 

} 
 
In the example above, the pa_match event matched the key 

pressed and the application started. It is also quite possible that 
the window manager first processes the key press in one 
function and then calls another function to start an application. 
In this case additional matching events may be needed.  

Additional matching events solve the event-matching 
problem for all our example requirements. 

Perl [9] solves the issue of assertion beginning and end 
matching in offline analysis by using an interval system. In her 
analysis any interval between two events in a log file can have 
some performance constraint. Even in the interval system, the 
events have to have enough information for matching to occur. 
For example, if there is no information which 
START_KEYPRESSED event starts the calendar application, it 
is impossible to check the timing constraint on the opening of a 
calendar application even using interval system. 

3.1.2 Assertion formulas 
To calculate the timing constraints, the assertions have to 

have a way to specify them. The constraints, represented as 
expressions, may refer to data from assertion beginning events, 
intermediate events, as well as assertion end events. When 
these events take place in the same process, local and global 
variables, and object fields can be used to store the data. The 
assertion formula then can refer to the data in the same 
programming language in which the software is written. 
Consider the example: 



 

int x; 
int functionWithAssertion (…) 
{ 
 … 

pa_start(ASSERTION1, …); 
… 
x = 10; 

 … 
 pa_end(ASSERTION1, 

(assertion_interval(ASSERTION1) < x * 5)); 
… 

} 
 
In this case, the values for expression 

assertion_interval(ASSERTION1) < x * 5 are taken from 
variables, the assertion_interval helper function uses the 
timestamps obtained at pa_start and pa_end to calculate how 
long the code execution between the start and the end took, and 
the assertion formula can be compiled into the program code and 
calculated there. The timestamps can be obtained by calling a 
time function behind the scenes and storing the timer data into a 
global data structure. 

This approach is very similar to functional assertions that 
use local and global variables, object fields, and constants 
available in the program spot where the assertion is placed. If 
additional information for functional assertions is needed, the 
assumption is that the programmer will provide it via helper 
variables and helper functions. This approach may work for 
performance requirements (2, 11). 

However, this approach does not work well when pa_start 
and pa_end occur in different processes, since the assertion 
formula in one process cannot refer to variables in another 
process. In this case, there are a couple of possible approaches. 
One possibility is to modify the language compiler or linker to 
correctly build the code to access data from another process via 
inter-process communication or shared memory. Another 
possibility is to explicitly encapsulate the access to the data from 
another process in wrappers, for example: 

// process1: 
int functionWithAssertionStart (…) 
{ 
 … 

pa_start(ASSERTION1, …); 
… 
x = 10; 

} 
 
// process2: 
int functionWithAssertionEnd(…) 
{ 
 … 
 pa_end(ASSERTION1, 

  assertion_interval(ASSERTION1) 
  < pa_access(PROCESS1, “x”) * 5); 
… 

} 

 Code 1: Data access with wrappers 

Yet another approach would be to implement an assertion 
formula specification language independent from the underlying 
programming language and also implement some mechanism to 
extract data from processes that hold pa_start and pa_end 

events. This provides a nice separation of the assertion 
constraints and software. 

The compiler/linker modification approach keeps the 
advantage of specifying the assertion simply in the underlying 
language. However, it is not feasible when compiler or linker 
cannot be modified. Language pre-processor could also be used 
for this approach if available. 

The completely new assertion formula language provides 
the power to specify assertions that may not be easily specified 
in the underlying language. For example, adding such 
constructs as “always” or “there exists” may be difficult to 
express without breaking the underlying language rules. Even 
referring to the old value of a variable cannot be done without 
programmer help (adding an extra variable) unless already 
supported by the underlying programming language [7]. The 
drawback of the new assertion language approach is that the 
formula becomes different from the underlying language 
expressions and programmers may have trouble specifying 
assertions. 

The wrapper approach is intermediate between two 
extremes above. Vetter and Worley [16] use it even in their 
single process assertions by specifying assertion formulas in 
the C/C++ printf format. 

3.2. Data for assertions 
Performance assertions usually correspond not to a single 

performance constraint, but to a parameterized performance 
constraint model. For example, a performance assertion for a 
file read response time is usually not specified as “File should 
be read in less than 100 ms”, but rather as (8) “Reading of the 
file should take at most 10ms multiplied by the number of 
blocks read and multiplied by the ratio of total and consecutive 
blocks in the file”. The file-read constraint may be dependent 
on the size of the data read, on the file block size and so on. 
These parameters have to be available for assertion validation. 
Some assertions need even more information. Assume that we 
need to check whether a program deletes all the files from a 
directory within certain time. The number of files in the 
directory may not be counted in the process that contains 
pa_start event or in the process that contains pa_end event. 
This number may be calculated only somewhere inside the file 
manager system. In assertions that occur in the same process, 
such information can be stored in global variables or objects. In 
assertions that cross process boundaries, we propose an 
assertion specific mechanism that sets values needed by 
assertions. Therefore we introduce a pa_set construct that 
allows setting a named parameter: 

pa_set (“NumberFilesinDirectory”, 
              OptionalAssertionID, 20); 

The variable can be set for a single assertion by specifying 
an assertion ID, or for all assertions. It is likely that assertions 
for requirements (7, 8, 11, 12) may need such pa_set 
constructs. 

3.3. Time and assertions 
The assertion model of pa_start, pa_match, pa_set, and 

pa_end events is tightly connected to the passage of time. The 



 

assertion is only checked when the pa_end event is reached. 
This has a number of important implications. 

First, what happens if a certain pa_end event is never 
executed, even though the corresponding (via ID) pa_start event 
was executed? Since there is some constraint that specifies how 
much time should have passed from the pa_start event to the 
corresponding pa_end event, it seems that this constraint is 
violated if the pa_end event never occurs. In essence, the mental 
model here is that the pa_end event occurred infinitely far in the 
future from the pa_start, so the constraint was violated. 
However, the situation is not as simple as it seems. Without 
execution of the pa_end event and certain pa_match or pa_set 
events the system may not have enough information to evaluate 
the assertion constraint formula. For example, if variable x were 
never assigned in our example Code 1, the constraint formula 
cannot be calculated and it is impossible to claim that it was 
violated even if the program ran for a very long time after 
executing the pa_start event.  

This means that the system cannot just raise an assertion if 
pa_end does not occur within a certain time frame. On the other 
hand, in continuously executing software systems it is 
impossible to wait until the program terminates to raise the 
assertion “pa_end corresponding to pa_start(ASSERTION1) did 
not occur”. 

Another issue with time is the ordering of the events. 
Obviously pa_end events that occur before matching pa_start 
events should be reported, since this should only occur as an 
unintended consequence of misplaced pa_end or pa_start events. 
Out of order pa_set events that set variables used in assertions 
are more dangerous. They can lead to hard to analyze assertion 
failures or system failures without assertion violations (false 
positives or false negatives) when the out-of-date pa_set value is 
used to calculate the constraint formula. One way to debug this 
issue is to collect the complete log file and manually go through 
the events in it – a labor-intensive approach. Unfortunately such 
errors are similar to programming errors in that they cannot be 
completely prevented or automatically detected. 

Performance assertion constraints involve time expressions. 
Time is usually measured in seconds and obtained from the 
operating system or hardware timer functions. It is also possible 
to have constraints expressed in CPU instructions or cycles; 
however, hardware support is usually needed for data collection 
for such constraints. 

The time in constraints may refer to absolute time between 
events or the process time, where only the time spent in a 
specific process (task or thread) is counted. Using process time 
in constraints requires a service for measuring such time. Such 
services are available in some operating systems and are 
possible to implement in others.  

4. PERFORMANCE ASSERTIONS FOR 
MOBILE DEVICES  

The previous section discussed some issues about 
performance assertions, their semantics and specification, and 
presented some solutions to them. In this section, we propose a 
design that is applicable in Symbian based [15] mobile devices, 

easy to use for programmers, and avoids some of the 
implementation issues. It contains a lot of the ideas introduced 
in the previous section. We also present the implementation of 
this framework. 

We propose to use the pa_start and pa_end events with 
static and dynamic IDs. When dynamic IDs are not needed, 
they can be left null. Additional matching is provided using 
pa_match events. For the purpose of simplicity, we assume that 
pa_match event can tie only a single ID of a preceding event 
(pa_start or pa_match) and a single ID of a following event 
(another pa_match or pa_end). 

We need to be able to specify assertions across processes. 
At the same time, we want to keep assertions in the underlying 
programming language. Therefore we propose accessing data 
needed for assertions through wrapper functions.  

We specify assertion formulas in a tool separate from the 
analyzed source code, so that changing of the assertion formula 
does not require recompilation and rebuilding of the whole 
software system. 

We propose that the system does not raise assertions on the 
pa_start events that do not have a corresponding pa_end event. 
However, we propose a feature that allows a performance 
engineer to see the list of open pa_start events and make 
decisions whether these should have ended. 

We implemented the assertion checker as a library of 
pa_start, pa_match, pa_set, pa_end and other helper functions. 
In our implementation these functions pass the data needed for 
assertion formula evaluation to the assertion checker inside a 
separate process. In this sense, our approach is similar to semi-
online approach proposed by Perl et al [10]. However, it 
performs a fully online assertion processing. 

In online performance assertion analysis all open pa_start 
and pa_set events and their data need to be kept for assertion 
evaluation. In the general case, pa_start events not closed by 
pa_end events would create uncontrolled memory increase. In 
our domain, we expect to test use cases that are no more than 
10 minutes long. So even if we generously assume 1 event 
every 10 milliseconds, only 10 * 60 * 100 = 60000 events 
would accumulate. Assuming 10 bytes per event, this only 
needs about 600kB of RAM – an acceptable amount of 
memory on a device. In our experiments much fewer events 
were collected and remain open for extended periods of time. 
We expect that to be true in production use too. All 
performance constraints we encountered up till now had a 
millisecond or second range restrictions even for the worst 
values of parameters. These data lead us to believe that the 
unbounded growth of events in memory is not an issue in the 
mobile device domain. 

We also plan to use a “worst case” upper bound that limits 
the length of time open performance assertion events should 
exist. If the performance constraints should be handled in a few 
seconds for most parameter values, the performance test 
engineer can use their domain knowledge to specify a 
relatively high upper bound, such as 30 seconds or 1 minute. 
Such upper bound should not lead to false positive assertion 
violations, but could decrease the overhead of retaining and 
checking old open events. 



 

We have implemented the framework described above for 
Symbian based mobile devices. The architecture of the 
implementation is shown in Figure 1. Assertion functions are 
called in the application code. These functions communicate the 
events to the back-end process that contains the assertion event 
database and the assertion checker. Occurring pa_start events 
are added to the assertion event database; pa_set events set the 
variable values; pa_end events trigger corresponding pa_start 
event retrieval and assertion evaluation. The assertion UI 
communicates with the back end to enable/disable assertion 
tracking and to display the ongoing and failed assertions. 

Application
code:
x = 5;
pa_start(...);
...
pa_end(...);

Assertion
UI

Backend
process

Assertion
checker

assertion
events

 

Figure 1. Architecture of the assertion framework 

An assertion event takes about 3ms with more than a half of 
this time (1.7ms) used by the library function that obtains the 
time stamp of the event. To improve the efficiency of 
implementation, a more efficient way to obtain the time stamp is 
needed. The current performance assertion implementation can 
be used to validate high-level performance requirements that 
take at least 1 second – in such case pa_start and pa_end events 
will contribute 6% overhead. Requirements (2, 6, 7, 8, 11, 12) 
can be checked with the current implementation without high 
overhead. 

5. PROGRAM REQUIREMENTS 
CHECKED VIA ASSERTIONS 

We applied our performance assertion system to a number of 
performance requirements from the list of performance 
requirements mandated by mobile device project teams. This 
section describes three assertion examples in more detail. 

“Opening the calendar application should take less than 2 
seconds plus 5 ms per each appointment in current month” – this 
assertion belongs to a large class of performance assertions 
describing application startup. The application startup time is an 
important soft real-time constraint. Users expect the applications 
to start up immediately. However, for most applications the 
startup time cannot be characterized by a single constant, since it 
depends on various things that the application needs to process 
at the startup. Calendar is one of such applications, where the 
application starts in the current month view by default, showing 
all items in it. Therefore the assertion constraint depends on the 
number of appointments in the current month. To check this 
assertion, the pa_start event was added to the calendar 
initialization and pa_end event was inserted at the point where 
the display of the current month view is finished. Since the 
calendar application communicates with window server for 

display, the assertion had to be placed so that window server 
operations are finished before the pa_end event. A variable 
containing the number of items in the current month view had 
to be set via pa_set to transfer the number of appointments to 
the assertion evaluator. 

“Deleting contacts in the phone book application should 
take less than 1 second plus 5 ms per each deleted contact” – 
another assertion that corresponds with a user-interface 
requirement. This assertion had to exclude the time taken by 
user confirmation of the delete command. The phone book 
application deletes contacts from a contact database. The 
database is managed in a different process; therefore, the 
placement of the assertion had to take into account such 
runtime architecture. The assertion had to obtain the number of 
contacts deleted via pa_set value.  

“File copy rate from internal flash memory disk to flash 
card should be at least MinRate kb/s” – this assertion checks 
the requirement of the file transfer rate during a copy from one 
flash memory drive to another. To check this assertion pa_start 
and pa_end events were added to the File Manager process. 
The file size was obtained and provided to the assertion 
checker via pa_set. 

These three assertions demonstrate the variety of 
requirements from real mobile device software development 
programs that were checked using performance assertions. 
Other requirements are similar to the ones described and can be 
easily handled by our framework of performance assertions. 
Since we used the assertions on a “work in progress” software 
release, some of the assertions passed and some failed.  

6. DISCUSSION 

Performance assertions seem to be a natural fit for 
specifying and validating performance requirements in mobile 
and embedded devices. Performance engineers have a lot of 
performance requirements that are difficult to specify in the 
software and to check during testing. Programmers need a 
simple, well-defined mechanism that is powerful enough to be 
able to specify various performance requirements and check 
them without a lot of testing work. Performance assertions 
offer such a mechanism. The proposal we presented resolves a 
lot of issues discovered in applying previous research results. It 
provides a needed performance assertion framework. 

Performance assertions fit nicely into the quality assurance 
framework. Performance requirements may be created 
beforehand from requirements in the standards or from user-
interface requirements. Such requirements can be directly 
translated into performance assertions. Additionally, software 
performance can be measured experimentally and the 
measurements can be used to create performance requirements 
(and therefore performance assertions) for future products. 
Such requirements for performance regression testing will have 
parameters to adjust them to new software and hardware 
platforms. These parameters can be inserted directly into 
assertions. 

A large issue in applying performance assertions to all 
software independent of domain is that programmers may not 



 

care about their program performance if it is deemed 
“satisfactory”. This highly subjective judgment may be 
sufficient for a lot of programmers. Even if the programmers 
want to use performance assertions, they may not have good 
performance requirements that could be used for constraints in 
the assertions. Finally, even if requirements exist – such as “15 
video frames per second for all MPEG movies” – it may not be 
easy to decide where to place the assertions to validate the 
requirements. We believe from our experience that these issues 
do not apply to mobile device domain. In our domain, 
quantitative performance requirements are specified and 
checked in testing. However, these issues need to be resolved in 
the future to apply our work to the general software systems. 

7. RELATED AND FUTURE WORK 

Functional assertions have a long history, starting with a 
paper by Floyd [3] and continuing with a lot of seminal papers 
and books (Meyer [7], Rosenblum [13], etc.). 

Performance assertions are less explored. Major work in this 
area includes Perl’s thesis [9], Perl et al. paper [10], and a paper 
by Vetter and Worley [16]. 

Perl only analyzed offline assertion analysis. Perl’s interval 
system is easily applicable in offline, post mortem performance 
analysis, since the whole performance event log file is available 
and can be analyzed and the relevant events matched. However, 
if performance assertions should be triggered online, during 
execution, the interval system is less attractive. Naive 
implementation of the interval system would have to keep all 
performance events from the very beginning of the program 
execution and process the whole log during each event. Even 
though there are techniques to optimize such processing, the 
overhead would likely to be prohibitive. Therefore a simpler 
matching approach, like the one presented in this paper, is 
needed. 

Offline processing of an event log is powerful for checking 
statistical performance assertions. For example, assertions that 
use averages can easily be computed from a log, but are not 
easily defined for online validation. In case of offline computing 
the average is calculated over the whole log. In online analysis 
“the whole log” is not available until the system terminates. For 
systems that do not terminate and are continuously active, the 
average can be computed only for a fixed number of events in a 
sliding window. It is also possible to compute average (and other 
statistical metrics) for all events from the beginning of the 
system operation. This may result in the assertion violations 
early in the operation, since the log would contain very few 
events. 

Perl et al. paper [10] presents a semi-online system that 
produces event logs, which are then analyzed on another 
computer with different log analysis tools. This approach still 
uses the offline log analysis algorithms. It is not a fully online 
performance assertion system and it does not work out the issues 
facing online performance assertion systems.   

Vetter and Worley [16] only presented the idea of online 
assertions but did not consider any of the issues of applying 
them in complex large software systems. 

Although a lot of performance issues are discovered using 
profilers, performance assertions have a different goal and 
reason. Comparing performance assertions to profilers is very 
similar to comparing functional assertions and debuggers. Both 
of them find issues in a program, but they use quite different 
approaches. Work by Reiss [12]  is related to performance 
assertions, since it deals with response times of events in 
reactive systems. 

In the future, the work by Andrews on log file analysis [1] 
possibly could be adapted to process performance logs. Aspect 
Oriented Programming [6] has been suggested as an ideal 
mechanism for implementing orthogonal concerns and could 
be applied to implement performance assertions at least on the 
platforms where AOP is available. 

When considering a language for performance constraint 
specification, it might be worthwhile to consider prior work in 
Tquel [14]. Temporal logic [11] is another formalism that can 
be considered for inspiration on specifying performance 
constraints. 

It may be worthwhile to explore the possibility to 
dynamically discover performance assertions similarly to 
functional and temporal invariant discovery done by Ernst and 
others [2] and Yang and Evans [17]. 

Our implementation could be improved by using low-
overhead hardware timers to decrease the overhead of taking a 
timestamp. However, such timers are not always available. 
Timestamp operation is currently a major contributor to the 
overhead. After it is optimized, secondary contributors to the 
overhead might be exposed. 

8. CONCLUSION 

This paper explores the application of the performance 
assertions in large software systems, such as mobile device 
software. When applying performance assertions for such 
systems, we have identified and resolved a number of issues in 
assertion specification, matching, and evaluation. 

We have described and implemented a concise, yet 
sufficiently powerful framework that allows specification and 
validation of real world performance requirements for mobile 
devices. We have applied this framework on a number of 
performance requirements from mobile device programs. We 
believe that such a framework will allow performance 
engineers to rapidly adopt performance assertions. 
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