

Performance Assertions for Mobile Devices

 Raimondas Lencevicius Edu Metz
 Nokia Research Center Cambridge ATI Technologies Inc.
 3 Cambridge Center, Cambridge, 1 Commerce Valley Drive, Markham,
 MA 02142, USA ON L3T 7X6, Canada
 Raimondas.Lencevicius@nokia.com emetz@ati.com

ABSTRACT
Assertions have long been used to validate the functionality of
software systems. Researchers and practitioners have extended
them for validation of non-functional requirements, such as
performance. This paper presents the implementation and
application of the performance assertions in mobile device
software. When applying performance assertions for such
systems, we have discovered and resolved a number of issues in
assertion specification, matching, and evaluation that were
unresolved in previous research. The paper describes a simple,
but effective framework geared towards mobile devices that
allows specification and validation of real world performance
requirements.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program

Verification; C.4 [Performance of Systems].

General Terms
Measurement, Performance, Verification.

Keywords
Mobile devices, assertions, performance.

1. INTRODUCTION

Assertions have long been used to validate the functionality
of software systems [3][5][7][13]. Because assertions became a
well-known and easy to use tool, researchers and practitioners
tried to extend them for validation of non-functional
requirements, such as performance. Perl [9][10] proposed to use
assertions for validation of performance requirements and
implemented such performance assertion system. Perl’s work
concentrated on post-mortem assertion checking using trace
logs. Vetter and Worley [16] extended this work by proposing
online validation of performance assertions. However, the
designs of performance assertions in previous work contain a
number of unresolved issues that hamper performance assertion
adoption in practice: there is no mechanism for gathering and

matching performance related events across process
boundaries; no easily readable and writable assertion formulas
integrated in the same programming language as the system
under test; no general way to obtain data used in assertion
formulas. Our work suggests ways to address these issues.

Mobile devices contain complex multitasking software
systems subject to numerous performance requirements.
Without performance assertions, performance requirements in
mobile devices are often checked by hand or with ad hoc tools
that analyze enormous trace log files gathered during system
execution. Performance assertions in mobile systems allow
simpler, faster and more precise testing and validation. We
have adapted and extended previously described assertion
frameworks to software in mobile devices.

Performance assertions allow to specify performance
requirements, map them to the source code and validate them
during execution. Performance assertions do not provide
guarantees that performance constraints will be never violated.
They are tools for testing, not for the formal verification. If the
software executes without triggering the assertion, it
successfully passes this test case. However, the assertion may
still fail in another test case. If it triggers the assertion, the test
case fails. Failing assertions provide immediate feedback to
test engineers with localized report on the detected violation,
which is a large improvement over the post-mortem trace
analysis that is usually used to check performance constraints.

Section 2 describes the mobile device domain, performance
requirements in it and how they can be handled using
performance assertions. Section 3 describes the issues with
performance assertions that we encountered and proposes
possible ways to resolve them. Section 4 presents our approach
for performance assertions in mobile devices including
assertion framework implementation. Section 5 discusses
application of performance assertions to representative
performance requirements. Section 6 discusses the use of
performance assertions in mobile software development
process and explores the application of performance assertions
in general software. The paper concludes with related and
future work and conclusions.

2. MOBILE DEVICE APPLICATION
DOMAIN

This section describes the application domain motivating
our use of performance assertions. Although the ideas explored
in this paper may have wider application, we are primarily

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

ISSTA'06, July 17–20, 2006, Portland, Maine, USA.
Copyright 2006 ACM 1-59593-263-1/06/0007...$5.00.
.

concerned with embedded systems such as mobile phones or
personal communication devices. Such systems have a number
of characteristics that make them different from others and thus
define an application domain.

Today’s personal communication devices are more than
voice call terminals. Mobile phones serve as platforms for a
variety of mobile applications including text and picture
messaging as well as personal information management,
including data synchronization with remote servers and desktop
computers. Many mobile phones today are equipped with
imaging devices and are capable of taking still images and video
clips. The images may be sent over wireless networks to other
phones or may be transferred to a remote server or a desktop
computer for storage or forwarding. Mobile phones also have a
number of local connectivity interfaces such as USB, IrDA, and
Bluetooth that can be used for a variety of applications involving
local data transfer, remote execution, and other types of
interaction with surrounding computing resources. For example,
a phone can serve as a wireless modem for a laptop computer
over Bluetooth connecting it to wide area network over circuit
switched data call or GPRS (General Packet Radio Service)
packet data connection.

The above description shows that mobile phones host a
range of communication-centered applications most of which
have performance constraints at various levels. Some of these
performance constraints are hard real-time, some of them are
soft real-time, i.e., they affect the quality of operation perceived
by users.

Lower layers of software implementing device drivers or
protocol stacks have to satisfy constraints set in standards or
hardware specifications. During GPRS session lower layer
packets arrive every 10 ms. GSM (Global System for Mobile
Communications) [4] level 3 signaling standard requires 500 ms
response to any GSM Layer 3 message. GSM level 2
performance requirements require response to commands within
50 ms. GSM-WCDMA (Wideband Code Division Multiple
Access) handover has 40 ms absolute constraint for completion.

Middleware and application layers need to satisfy usability
constraints to optimize UI, minimize audio and video jitter, and
so on. 10 or 15 frames per second of video should be rendered
on the device. Opening a scheduled meeting in a calendar
application should take less than 1 second.

In this paper we selected some performance requirements
from lower layers, middleware and applications to use as
motivating examples. These requirements are close to the
requirements used for real products. We simplified the
requirements and slightly changed their time constraints to avoid
tying them to a concrete product:

1. During GPRS session lower layer packets arrive every
10 ms.

2. GSM level 3 signaling standard requires 500 ms
response to any GSM Layer 3 message.

3. GSM level 2 performance requirements require
response to commands within 50 ms.

4. GSM-WCDMA handover has 40 ms absolute constraint
for completion.

5. Screen redraw should take no more than 10% of the
time needed to insert an appointment into a calendar
application

6. Opening a scheduled meeting in a calendar
application should take less than 1 second

7. Opening the calendar application should take less
than 2 seconds plus 5 ms per each appointment in
current month

8. Reading of a file should take at most 10ms multiplied
by the number of blocks read and multiplied by the
ratio of total and consecutive blocks in the file

9. Processing delay of audio frame through voice-over-
IP (VoIP) stack should be less than 20 ms

10. Voice over IP call setup should be less than X ms

11. Deleting contacts in the phone book application
should take less than 1 second plus 5 ms per each
deleted contact

12. File copy rate from internal flash memory disk to
flash card should be at least MinRate kb/s

The requirements from this list are referred to in other
sections of this paper by italicized numbers in parentheses:
(1,3).

Although some of the requirements listed are soft, catching
their violations is still important in the testing process, since
this allows improving the product before it is released to
customers. Therefore notifications about failed performance
assertions are very useful for the product development team.
On the other hand, performance requirements on such complex
systems as mobile device software are practically impossible to
verify formally. Even if the verification were possible, it would
likely show that the system violates the constraints in the worst
case. For example, it is possible that the applications may fail
to start in 1 second if a lot of system operations are scheduled
at the same time. However, such worst-case examples usually
involve highly unlikely scheduling of different processes and
threads that occurs very infrequently in practice. Therefore
performance assertions may be a good alternative to check the
likely cases of execution during testing process.

3. EXTENDING PERFORMANCE
ASSERTION SPECIFICATIONS

Performance assertions have been proposed and described
in previous work [9][10][16]. We have attempted to use these
assertions to validate performance requirements in mobile
devices. During our analysis of performance assertion
applicability to mobile devices, we discovered a number of
issues with previous proposals. We extend the performance
assertions to resolve these issues.

For assertions on mobile devices we considered online
performance assertions, i.e. the assertions that are checked
during the execution of the software system. Online assertion
processing allows to halt the system or to notify the test
engineer as soon as an assertion is violated. This shortens the

testing time in case of assertion violations and provides
additional clues for the causes of violations. In contrast, offline
(post-mortem) assertion processing happens after the test. Even
if assertion violations are found then, the test engineer may not
remember some significant details that happened during the test,
which were related to the failed assertion.

Programming languages with assertions (e.g. C [5], Eiffel
[7]) usually provide online functional property assertions, which
is another reason to follow the same model with performance
assertions. Online performance assertions may have a higher
overhead than offline assertions if the online processing of the
assertion constraints costs more than storing the events into non-
volatile memory. Therefore the costs of online processing and
storing events need to be evaluated. This is possibly a more
significant issue for performance assertions than for functional
assertions, since online performance assertions change the
performance of the same system that they are measuring.
However, if performance assertions are not triggered in the
system that is running slower because of the assertion overhead,
there is additional assurance that the constraints will not be
violated in a system with assertions removed. If assertions fail,
there is a chance of a false positive due to assertion overhead,
but the failure site should be investigated anyway, since it may
have a too narrow margin to failure. Having said that,
performance test engineers should be aware of the assertion
overhead [8] and try to minimize it in testing.

Another important observation is that mobile device
software often uses a multitasking client-server model (for
example, Symbian OS [15] model). Performance requirements
and therefore assertions in such model often cross process
boundaries. This means that we have to allow programmers to
specify cross-process performance constraints.

Keeping in mind that we are using online performance
assertions and that cross-process assertions should be available,
the following subsections describe in detail the issues that have
to be solved to have a full-fledged performance assertion
framework in complex software systems. We suggest a number
of solutions to the issues raised.

3.1. Assertion specification
Although discussed in previous work [9][10][16],

performance assertion specification is very important and needs
to be revisited to provide a powerful and easy to use mechanism.

Performance assertions have some properties that make
them different from functional assertions. Therefore it is
impossible to just adopt the functional assertion specification
model. Differently from functional assertions (e.g. in C
programming language [5]) that are textually located in a single
place of the source code and executed in a single “place” during
program execution, performance assertions most of the time
consist of multiple textual entities that correspond to multiple
temporal events. Any assertions that have a timing constraint
between two points of execution in a program need at least two
entities: the beginning of the assertion and the end of the
assertion. Vetter and Worley [16] use pa_start and pa_end
constructs to indicate where assertions start and end. For more
complex assertions, such as: (5) “Screen redraw should take no
more than 10% of the time needed to insert an appointment into

a calendar application”, there needs to be more than two
different events in the program execution. In this example, the
assertion needs events that outline the beginning and end of
each screen redraw procedure as well as the whole appointment
insertion code. Only using these events the assertion can
calculate whether the constraint was satisfied. Let us consider
what information is needed for performance assertion
specification. Based on these needs, we propose a way to
specify assertions in section 4.

3.1.1 Event matching
pa_start and pa_end constructs by itself are only

sufficient for simple assertions contained in a single non-
recursive function. However, real-world performance
requirements can span function and even process boundaries.
Consider a performance assertion to validate the requirement
(6) “Opening a scheduled meeting in a calendar application
should take less than 1 second”. The constructs for the
beginning and the end of this assertion would belong to
different processes. To be precise, the beginning of the
assertion would be in a keyboard interrupt handler while the
end would be in the calendar application. Alternatively, the
beginning and end event markers could be placed into the
window manager code, but even then they would belong to
different functions and possibly threads.

Furthermore, the program may contain more than one
performance assertion at the same time. Because of this, there
has to be a way to match the correct pa_start construct with
corresponding pa_end construct. A simplest solution is to
match using a static performance assertion IDs:

int someCalendarFunction (…)
{
 …

pa_start(CALENDAR_EVENT_OPEN, …);
…

}

int someOtherCalendarFunction (…)
{
 …

pa_end(CALENDAR_EVENT_OPEN, …);
…

}

This approach provides a unique static assertion name (or

identification). However, a unique static name is not sufficient
at all times. There are assertions that need dynamic
identification. For example, to assert that the time from a GUI
object creation to its rendering should be limited, we cannot
just use static assertion IDs:

int GUIObject::GUIObject (…)
{
 …

pa_start(GUIOBJECT, …);
…

}

int GUIObject::Render (…)
{
 …

pa_end(GUIOBJECT, …);
…

}

Multiple GUI objects may be created before rendering any

single one of them, so the execution may have a number of
pa_start(GUIOBJECT, …) events before a pa_end(GUIOBJECT,
…) event. Since there is no identification of the object created, it
would be impossible to match the correct pa_start event to the
correct pa_end event.

Adding dynamic assertion IDs solves this problem:

int GUIObject::GUIObject (…)
{
 …

pa_start(GUIOBJECT, GUIObjectID, …);
…

}

int GUIObject::Render (…)
{
 …

pa_end(GUIOBJECT, GUIObjectID, …);
…

}

In this case GUIObjectID can be a this pointer to the object

itself. In general, dynamic IDs can be object IDs, hash values or
any other unique dynamic identifiers. Dynamic IDs may solve
the event matching for requirements (1, 2, 3, 5, 6, 8, 11)1.

Unfortunately, this solution is not always sufficient either.
Consider the example of a timing constraint on the opening of a
calendar application ((7) “Opening the calendar application
should take less than 2 seconds plus 5 ms per each appointment
in current month”). The opening of the application via clicking
on its icon in the device generates a software interrupt. The
interrupt handler has the information about the key pressed, but
it does not have the information about the application that was
started. So the interrupt handler may contain the following
beginning of an assertion:

void keyboardInterruptHandler (…)
{
 …

pa_start(START_KEYPRESSED, keyID, …);
…

}

This pa_start identifies only the key that was pressed. On the

other hand the calendar application may contain the following
assertion end statement:

1 Whether a certain performance assertion solution is

applicable to a certain example requirement is dependent on the
way software is written, so we use expressions “may solve” or
“may apply” throughout the paper.

int CalendarApplication::Initialize (…)
{
 …
 // Application started

pa_end(CALENDAR_APPLICATION, …);
…

}

This end statement only identifies the launched application.

Now, how can the keyboard event be matched with the
calendar application initialization when the keyboard event
handler does not know which application it starts and the
application does not know which keyboard event started it? In
the system execution there may be many keyboard events and
even multiple application initializations. How is it possible to
match the keyboard event with the corresponding application
initialization? There has to be an intermediate event that
provides matching for the two events. This could be a
statement in the window manager that processes the key
presses and starts corresponding applications:

int WindowManager::KeyPressStartApp (…)
{
 …
 pa_match(START_KEYPRESSED, keyID,

CALENDAR_APPLICATION, …);
…

}

In the example above, the pa_match event matched the key

pressed and the application started. It is also quite possible that
the window manager first processes the key press in one
function and then calls another function to start an application.
In this case additional matching events may be needed.

Additional matching events solve the event-matching
problem for all our example requirements.

Perl [9] solves the issue of assertion beginning and end
matching in offline analysis by using an interval system. In her
analysis any interval between two events in a log file can have
some performance constraint. Even in the interval system, the
events have to have enough information for matching to occur.
For example, if there is no information which
START_KEYPRESSED event starts the calendar application, it
is impossible to check the timing constraint on the opening of a
calendar application even using interval system.

3.1.2 Assertion formulas
To calculate the timing constraints, the assertions have to

have a way to specify them. The constraints, represented as
expressions, may refer to data from assertion beginning events,
intermediate events, as well as assertion end events. When
these events take place in the same process, local and global
variables, and object fields can be used to store the data. The
assertion formula then can refer to the data in the same
programming language in which the software is written.
Consider the example:

int x;
int functionWithAssertion (…)
{
 …

pa_start(ASSERTION1, …);
…
x = 10;

 …
 pa_end(ASSERTION1,

(assertion_interval(ASSERTION1) < x * 5));
…

}

In this case, the values for expression

assertion_interval(ASSERTION1) < x * 5 are taken from
variables, the assertion_interval helper function uses the
timestamps obtained at pa_start and pa_end to calculate how
long the code execution between the start and the end took, and
the assertion formula can be compiled into the program code and
calculated there. The timestamps can be obtained by calling a
time function behind the scenes and storing the timer data into a
global data structure.

This approach is very similar to functional assertions that
use local and global variables, object fields, and constants
available in the program spot where the assertion is placed. If
additional information for functional assertions is needed, the
assumption is that the programmer will provide it via helper
variables and helper functions. This approach may work for
performance requirements (2, 11).

However, this approach does not work well when pa_start
and pa_end occur in different processes, since the assertion
formula in one process cannot refer to variables in another
process. In this case, there are a couple of possible approaches.
One possibility is to modify the language compiler or linker to
correctly build the code to access data from another process via
inter-process communication or shared memory. Another
possibility is to explicitly encapsulate the access to the data from
another process in wrappers, for example:

// process1:
int functionWithAssertionStart (…)
{
 …

pa_start(ASSERTION1, …);
…
x = 10;

}

// process2:
int functionWithAssertionEnd(…)
{
 …
 pa_end(ASSERTION1,

 assertion_interval(ASSERTION1)
 < pa_access(PROCESS1, “x”) * 5);
…

}

 Code 1: Data access with wrappers

Yet another approach would be to implement an assertion
formula specification language independent from the underlying
programming language and also implement some mechanism to
extract data from processes that hold pa_start and pa_end

events. This provides a nice separation of the assertion
constraints and software.

The compiler/linker modification approach keeps the
advantage of specifying the assertion simply in the underlying
language. However, it is not feasible when compiler or linker
cannot be modified. Language pre-processor could also be used
for this approach if available.

The completely new assertion formula language provides
the power to specify assertions that may not be easily specified
in the underlying language. For example, adding such
constructs as “always” or “there exists” may be difficult to
express without breaking the underlying language rules. Even
referring to the old value of a variable cannot be done without
programmer help (adding an extra variable) unless already
supported by the underlying programming language [7]. The
drawback of the new assertion language approach is that the
formula becomes different from the underlying language
expressions and programmers may have trouble specifying
assertions.

The wrapper approach is intermediate between two
extremes above. Vetter and Worley [16] use it even in their
single process assertions by specifying assertion formulas in
the C/C++ printf format.

3.2. Data for assertions
Performance assertions usually correspond not to a single

performance constraint, but to a parameterized performance
constraint model. For example, a performance assertion for a
file read response time is usually not specified as “File should
be read in less than 100 ms”, but rather as (8) “Reading of the
file should take at most 10ms multiplied by the number of
blocks read and multiplied by the ratio of total and consecutive
blocks in the file”. The file-read constraint may be dependent
on the size of the data read, on the file block size and so on.
These parameters have to be available for assertion validation.
Some assertions need even more information. Assume that we
need to check whether a program deletes all the files from a
directory within certain time. The number of files in the
directory may not be counted in the process that contains
pa_start event or in the process that contains pa_end event.
This number may be calculated only somewhere inside the file
manager system. In assertions that occur in the same process,
such information can be stored in global variables or objects. In
assertions that cross process boundaries, we propose an
assertion specific mechanism that sets values needed by
assertions. Therefore we introduce a pa_set construct that
allows setting a named parameter:

pa_set (“NumberFilesinDirectory”,
 OptionalAssertionID, 20);

The variable can be set for a single assertion by specifying
an assertion ID, or for all assertions. It is likely that assertions
for requirements (7, 8, 11, 12) may need such pa_set
constructs.

3.3. Time and assertions
The assertion model of pa_start, pa_match, pa_set, and

pa_end events is tightly connected to the passage of time. The

assertion is only checked when the pa_end event is reached.
This has a number of important implications.

First, what happens if a certain pa_end event is never
executed, even though the corresponding (via ID) pa_start event
was executed? Since there is some constraint that specifies how
much time should have passed from the pa_start event to the
corresponding pa_end event, it seems that this constraint is
violated if the pa_end event never occurs. In essence, the mental
model here is that the pa_end event occurred infinitely far in the
future from the pa_start, so the constraint was violated.
However, the situation is not as simple as it seems. Without
execution of the pa_end event and certain pa_match or pa_set
events the system may not have enough information to evaluate
the assertion constraint formula. For example, if variable x were
never assigned in our example Code 1, the constraint formula
cannot be calculated and it is impossible to claim that it was
violated even if the program ran for a very long time after
executing the pa_start event.

This means that the system cannot just raise an assertion if
pa_end does not occur within a certain time frame. On the other
hand, in continuously executing software systems it is
impossible to wait until the program terminates to raise the
assertion “pa_end corresponding to pa_start(ASSERTION1) did
not occur”.

Another issue with time is the ordering of the events.
Obviously pa_end events that occur before matching pa_start
events should be reported, since this should only occur as an
unintended consequence of misplaced pa_end or pa_start events.
Out of order pa_set events that set variables used in assertions
are more dangerous. They can lead to hard to analyze assertion
failures or system failures without assertion violations (false
positives or false negatives) when the out-of-date pa_set value is
used to calculate the constraint formula. One way to debug this
issue is to collect the complete log file and manually go through
the events in it – a labor-intensive approach. Unfortunately such
errors are similar to programming errors in that they cannot be
completely prevented or automatically detected.

Performance assertion constraints involve time expressions.
Time is usually measured in seconds and obtained from the
operating system or hardware timer functions. It is also possible
to have constraints expressed in CPU instructions or cycles;
however, hardware support is usually needed for data collection
for such constraints.

The time in constraints may refer to absolute time between
events or the process time, where only the time spent in a
specific process (task or thread) is counted. Using process time
in constraints requires a service for measuring such time. Such
services are available in some operating systems and are
possible to implement in others.

4. PERFORMANCE ASSERTIONS FOR
MOBILE DEVICES

The previous section discussed some issues about
performance assertions, their semantics and specification, and
presented some solutions to them. In this section, we propose a
design that is applicable in Symbian based [15] mobile devices,

easy to use for programmers, and avoids some of the
implementation issues. It contains a lot of the ideas introduced
in the previous section. We also present the implementation of
this framework.

We propose to use the pa_start and pa_end events with
static and dynamic IDs. When dynamic IDs are not needed,
they can be left null. Additional matching is provided using
pa_match events. For the purpose of simplicity, we assume that
pa_match event can tie only a single ID of a preceding event
(pa_start or pa_match) and a single ID of a following event
(another pa_match or pa_end).

We need to be able to specify assertions across processes.
At the same time, we want to keep assertions in the underlying
programming language. Therefore we propose accessing data
needed for assertions through wrapper functions.

We specify assertion formulas in a tool separate from the
analyzed source code, so that changing of the assertion formula
does not require recompilation and rebuilding of the whole
software system.

We propose that the system does not raise assertions on the
pa_start events that do not have a corresponding pa_end event.
However, we propose a feature that allows a performance
engineer to see the list of open pa_start events and make
decisions whether these should have ended.

We implemented the assertion checker as a library of
pa_start, pa_match, pa_set, pa_end and other helper functions.
In our implementation these functions pass the data needed for
assertion formula evaluation to the assertion checker inside a
separate process. In this sense, our approach is similar to semi-
online approach proposed by Perl et al [10]. However, it
performs a fully online assertion processing.

In online performance assertion analysis all open pa_start
and pa_set events and their data need to be kept for assertion
evaluation. In the general case, pa_start events not closed by
pa_end events would create uncontrolled memory increase. In
our domain, we expect to test use cases that are no more than
10 minutes long. So even if we generously assume 1 event
every 10 milliseconds, only 10 * 60 * 100 = 60000 events
would accumulate. Assuming 10 bytes per event, this only
needs about 600kB of RAM – an acceptable amount of
memory on a device. In our experiments much fewer events
were collected and remain open for extended periods of time.
We expect that to be true in production use too. All
performance constraints we encountered up till now had a
millisecond or second range restrictions even for the worst
values of parameters. These data lead us to believe that the
unbounded growth of events in memory is not an issue in the
mobile device domain.

We also plan to use a “worst case” upper bound that limits
the length of time open performance assertion events should
exist. If the performance constraints should be handled in a few
seconds for most parameter values, the performance test
engineer can use their domain knowledge to specify a
relatively high upper bound, such as 30 seconds or 1 minute.
Such upper bound should not lead to false positive assertion
violations, but could decrease the overhead of retaining and
checking old open events.

We have implemented the framework described above for
Symbian based mobile devices. The architecture of the
implementation is shown in Figure 1. Assertion functions are
called in the application code. These functions communicate the
events to the back-end process that contains the assertion event
database and the assertion checker. Occurring pa_start events
are added to the assertion event database; pa_set events set the
variable values; pa_end events trigger corresponding pa_start
event retrieval and assertion evaluation. The assertion UI
communicates with the back end to enable/disable assertion
tracking and to display the ongoing and failed assertions.

Application
code:
x = 5;
pa_start(...);
...
pa_end(...);

Assertion
UI

Backend
process

Assertion
checker

assertion
events

Figure 1. Architecture of the assertion framework

An assertion event takes about 3ms with more than a half of
this time (1.7ms) used by the library function that obtains the
time stamp of the event. To improve the efficiency of
implementation, a more efficient way to obtain the time stamp is
needed. The current performance assertion implementation can
be used to validate high-level performance requirements that
take at least 1 second – in such case pa_start and pa_end events
will contribute 6% overhead. Requirements (2, 6, 7, 8, 11, 12)
can be checked with the current implementation without high
overhead.

5. PROGRAM REQUIREMENTS
CHECKED VIA ASSERTIONS

We applied our performance assertion system to a number of
performance requirements from the list of performance
requirements mandated by mobile device project teams. This
section describes three assertion examples in more detail.

“Opening the calendar application should take less than 2
seconds plus 5 ms per each appointment in current month” – this
assertion belongs to a large class of performance assertions
describing application startup. The application startup time is an
important soft real-time constraint. Users expect the applications
to start up immediately. However, for most applications the
startup time cannot be characterized by a single constant, since it
depends on various things that the application needs to process
at the startup. Calendar is one of such applications, where the
application starts in the current month view by default, showing
all items in it. Therefore the assertion constraint depends on the
number of appointments in the current month. To check this
assertion, the pa_start event was added to the calendar
initialization and pa_end event was inserted at the point where
the display of the current month view is finished. Since the
calendar application communicates with window server for

display, the assertion had to be placed so that window server
operations are finished before the pa_end event. A variable
containing the number of items in the current month view had
to be set via pa_set to transfer the number of appointments to
the assertion evaluator.

“Deleting contacts in the phone book application should
take less than 1 second plus 5 ms per each deleted contact” –
another assertion that corresponds with a user-interface
requirement. This assertion had to exclude the time taken by
user confirmation of the delete command. The phone book
application deletes contacts from a contact database. The
database is managed in a different process; therefore, the
placement of the assertion had to take into account such
runtime architecture. The assertion had to obtain the number of
contacts deleted via pa_set value.

“File copy rate from internal flash memory disk to flash
card should be at least MinRate kb/s” – this assertion checks
the requirement of the file transfer rate during a copy from one
flash memory drive to another. To check this assertion pa_start
and pa_end events were added to the File Manager process.
The file size was obtained and provided to the assertion
checker via pa_set.

These three assertions demonstrate the variety of
requirements from real mobile device software development
programs that were checked using performance assertions.
Other requirements are similar to the ones described and can be
easily handled by our framework of performance assertions.
Since we used the assertions on a “work in progress” software
release, some of the assertions passed and some failed.

6. DISCUSSION

Performance assertions seem to be a natural fit for
specifying and validating performance requirements in mobile
and embedded devices. Performance engineers have a lot of
performance requirements that are difficult to specify in the
software and to check during testing. Programmers need a
simple, well-defined mechanism that is powerful enough to be
able to specify various performance requirements and check
them without a lot of testing work. Performance assertions
offer such a mechanism. The proposal we presented resolves a
lot of issues discovered in applying previous research results. It
provides a needed performance assertion framework.

Performance assertions fit nicely into the quality assurance
framework. Performance requirements may be created
beforehand from requirements in the standards or from user-
interface requirements. Such requirements can be directly
translated into performance assertions. Additionally, software
performance can be measured experimentally and the
measurements can be used to create performance requirements
(and therefore performance assertions) for future products.
Such requirements for performance regression testing will have
parameters to adjust them to new software and hardware
platforms. These parameters can be inserted directly into
assertions.

A large issue in applying performance assertions to all
software independent of domain is that programmers may not

care about their program performance if it is deemed
“satisfactory”. This highly subjective judgment may be
sufficient for a lot of programmers. Even if the programmers
want to use performance assertions, they may not have good
performance requirements that could be used for constraints in
the assertions. Finally, even if requirements exist – such as “15
video frames per second for all MPEG movies” – it may not be
easy to decide where to place the assertions to validate the
requirements. We believe from our experience that these issues
do not apply to mobile device domain. In our domain,
quantitative performance requirements are specified and
checked in testing. However, these issues need to be resolved in
the future to apply our work to the general software systems.

7. RELATED AND FUTURE WORK

Functional assertions have a long history, starting with a
paper by Floyd [3] and continuing with a lot of seminal papers
and books (Meyer [7], Rosenblum [13], etc.).

Performance assertions are less explored. Major work in this
area includes Perl’s thesis [9], Perl et al. paper [10], and a paper
by Vetter and Worley [16].

Perl only analyzed offline assertion analysis. Perl’s interval
system is easily applicable in offline, post mortem performance
analysis, since the whole performance event log file is available
and can be analyzed and the relevant events matched. However,
if performance assertions should be triggered online, during
execution, the interval system is less attractive. Naive
implementation of the interval system would have to keep all
performance events from the very beginning of the program
execution and process the whole log during each event. Even
though there are techniques to optimize such processing, the
overhead would likely to be prohibitive. Therefore a simpler
matching approach, like the one presented in this paper, is
needed.

Offline processing of an event log is powerful for checking
statistical performance assertions. For example, assertions that
use averages can easily be computed from a log, but are not
easily defined for online validation. In case of offline computing
the average is calculated over the whole log. In online analysis
“the whole log” is not available until the system terminates. For
systems that do not terminate and are continuously active, the
average can be computed only for a fixed number of events in a
sliding window. It is also possible to compute average (and other
statistical metrics) for all events from the beginning of the
system operation. This may result in the assertion violations
early in the operation, since the log would contain very few
events.

Perl et al. paper [10] presents a semi-online system that
produces event logs, which are then analyzed on another
computer with different log analysis tools. This approach still
uses the offline log analysis algorithms. It is not a fully online
performance assertion system and it does not work out the issues
facing online performance assertion systems.

Vetter and Worley [16] only presented the idea of online
assertions but did not consider any of the issues of applying
them in complex large software systems.

Although a lot of performance issues are discovered using
profilers, performance assertions have a different goal and
reason. Comparing performance assertions to profilers is very
similar to comparing functional assertions and debuggers. Both
of them find issues in a program, but they use quite different
approaches. Work by Reiss [12] is related to performance
assertions, since it deals with response times of events in
reactive systems.

In the future, the work by Andrews on log file analysis [1]
possibly could be adapted to process performance logs. Aspect
Oriented Programming [6] has been suggested as an ideal
mechanism for implementing orthogonal concerns and could
be applied to implement performance assertions at least on the
platforms where AOP is available.

When considering a language for performance constraint
specification, it might be worthwhile to consider prior work in
Tquel [14]. Temporal logic [11] is another formalism that can
be considered for inspiration on specifying performance
constraints.

It may be worthwhile to explore the possibility to
dynamically discover performance assertions similarly to
functional and temporal invariant discovery done by Ernst and
others [2] and Yang and Evans [17].

Our implementation could be improved by using low-
overhead hardware timers to decrease the overhead of taking a
timestamp. However, such timers are not always available.
Timestamp operation is currently a major contributor to the
overhead. After it is optimized, secondary contributors to the
overhead might be exposed.

8. CONCLUSION

This paper explores the application of the performance
assertions in large software systems, such as mobile device
software. When applying performance assertions for such
systems, we have identified and resolved a number of issues in
assertion specification, matching, and evaluation.

We have described and implemented a concise, yet
sufficiently powerful framework that allows specification and
validation of real world performance requirements for mobile
devices. We have applied this framework on a number of
performance requirements from mobile device programs. We
believe that such a framework will allow performance
engineers to rapidly adopt performance assertions.

9. ACKNOWLEDGEMENTS

Authors want to thank Alexander Ran, Karel Driesen, and
anonymous reviewers for comments on the earlier versions of
this paper.

10. REFERENCES

[1] Andrews, J., Testing using Log File Analysis: Tools,
Methods and Issues, Proceedings of the 13th Annual

International Conference on Automated Software
Engineering (ASE'98), Honolulu, Hawaii, October 1998,
pp. 157-166.

[2] Ernst, M. D., Cockrell, j., Griswold W. G., Notkin D.,
``Dynamically discovering likely program invariants to
support program evolution'', IEEE Transactions on
Software Engineering, vol. 27, no. 2, pp. 1-25, Feb. 2001.

[3] Floyd, R.W., Assigning Meanings to Programs,
Proceedings of the Symposium in Applied Mathematics,
Vol XIX, pp 19-32, American Mathematical Society, April
1967.

[4] GSM Association, http://www.gsmworld.com/, 2005.
[5] Kernighan B.W., Ritchie, D.M., The C Programming

Language, 2nd edition, Prentice Hall , NJ, 1988.
[6] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,

Videira Lopes, C., Loingtier, J.-M., and Irwin, J, Aspect-
Oriented Programming, Proceedings of the European
Conference on Object-Oriented Programming, 1997.

[7] Meyer B., Object-Oriented Software Construction, Prentice
Hall, 1988.

[8] Metz, E., Lencevicius, R., Efficient Instrumentation for
Performance Profiling, Proceedings of the 1st Workshop on
Dynamic Analysis, 2003, pp. 143–148

[9] Perl, S. E., Performance Assertion Checking, Ph.D. Thesis,
MIT, 1992.

[10] Perl, S. E., Weihl, W. E., Noble, B., Continuous
Monitoring and Performance Specification, DEC SRC
Research Report 153, 1998.

[11] Pnueli, A., "The temporal logic of programs",
Proceedings of the 18th IEEE Symposium on Foundations
of Computer Science, pages 46-67, 1977.

[12] Reiss, S.P., “Event-based performance analysis”,
Proceedings of the 11th International Workshop on
Program Comprehension (IWPC-2003), pp. 74-83, 2003.

[13] Rosenblum, D. S., Towards a method of programming
with assertions, Proceedings of the 14th international
conference on Software Engineering, Melbourne,
Australia, pp. 92 – 104, 1992

[14] Snodgrass, R., The temporal query language Tquel, ACM
Transactions on Database Systems (TODS), Volume 12 ,
Issue 2 (June 1987), pp. 247 – 298, 1987.

[15] Symbian OS, www.symbian.com, 2005.
[16] Vetter, J.; Worley, P.H., Asserting Performance

Expectations, Proceedings of the SC2002, 2002.
[17] Yang, J; Evans, D., Automatically Inferring Temporal

Properties for Program Evolution, Fifteenth IEEE
International Symposium on Software Reliability
Engineering (ISSRE 2004), 2-5 November 2004.

