
Can Fixed Priority Scheduling Work in Practice?
Raimondas Lencevicius, Alexander Ran

Nokia Research Center
5 Wayside Road, Burlington, MA 01803, USA

Raimondas.Lencevicius@nokia.com Alexander.Ran@nokia.com

1. Introduction and application domain
Last year our research group was requested to study the
runtime architecture of mobile phone software in order to
understand whether some performance aspects of the phone
could be improved. We expected to improve the
architecture along several dimensions:
• systematic derivation of task priorities for more

effective scheduling
• improve partition into tasks to make the architecture

more analyzable in terms of performance
A major part of the runtime architecture improvement work
was concerned with the scheduling of the mobile device.
We were aware of the large body of research work in
fixed-priority system scheduling area [2]-[4]. However,
when we tried to apply this research in our real-world
situation, we discovered a number of problems described
below.
In this paper we are primarily concerned with embedded
real-time systems such as mobile phones or personal
communication devices. Today personal communication
devices are more than voice call terminals. Mobile phones
serve as platforms for a variety of mobile applications
including text and picture messaging as well as personal
information management, including data synchronization
with remote servers and desktop computers. Mobile phones
host a range of communication-centered applications most
of which have real-time constraints. During a voice call
speech data must be processed in a timely fashion to avoid
jitter. During GPRS session lower layer packets arrive
every 10 ms. These are just few examples of system
requirements that lead to tight software performance
constraints.
To improve the performance of the mobile phone software,
we concentrated on the runtime software architecture—a
partition of all software functions into concurrent units and
a scheduling policy that deliver the best possible service to
the user with available resources. The units of concurrency
in most products are operating system tasks. Thus partition
of software into tasks and allocation of functionality to
tasks in the form of objects or functions are the most
important decisions in the design of the runtime
architecture [5]. In this paper, we focus on the scheduling
policy and its parameters. Some problems encountered in
our project can be solved by a different task design.

However, task redesign often is not feasible in industrial
setting since it takes long time and has high costs.

2. Featuresets
Some of the mobile phone applications must be executed
concurrently and thus have to be schedulable. However, if
all applications were executed at the same time, the system
would not be schedulable. Thus an essential concept in the
mobile device runtime architecture is a featureset. A
featureset is a set of concurrently available features.
Specification of useful featuresets for a given system is an
architecturally significant requirement. All featuresets have
to be schedulable.
System designers identify featuresets by first composing a
collection of all important use cases. Then designers
identify subsets of this collection containing use cases that
may overlap in time. Such subsets contain concurrently
available features—featuresets. Each use case contains one
or more execution scenarios. Each scenario is defined by
one or more sequences of events that occur in the scenario.
One or more objects handle each event. Each object is
allocated to one of the concurrent tasks. Therefore, each
featureset has a mapping to a set of tasks (Figure 1).

Featureset

ResourceScenario

ObjectEvent

concurrent

handled by

use (when held by task)

Scheduler

Task

allocate

determine schedule

hold

Runtime
Architecture

identify

Usecase
supported by

*

* *

*

analyze

*

* *

Figure 1. Runtime Architecture Meta Model

Tasks that do not belong to the same featureset do not have
to be collectively schedulable. If tasks that belong to the
same featureset are not schedulable, some architectural
decisions regarding allocation of objects to tasks or
resource scheduling policies must be revised.
Since each featureset maps to a set of tasks and no other
tasks can run in this featureset, it seems natural to analyze
the system and assign priorities separately for each
featureset. Such priority assignment in fixed priority
scheduling is called a mode [4]. Although featuresets can

be implemented as modes and mapped one-to-one to their
modes, featuresets differ from modes in several aspects.
Featuresets are a practical way of finding a minimal set of
events or tasks that belong to a mode. This allows to
include the smallest number of tasks and therefore the
smallest number of real-time constraints into a mode. By
reducing a number or tasks and constraints in a mode, the
mode becomes more evolvable—additional tasks and
constraints can be added easier in the future. This mode
minimization is not discussed in the scheduling literature.

3. Task model for scheduling
Whether we are scheduling a mode or a whole system, we
need to know certain properties of tasks and resources. To
apply fixed priority scheduling [4], we had to produce a list
of concurrent tasks and for each task to determine its
priority, period, execution time, and deadline or constraint
on response time. We had full access to the design
documentation, the source code, and extensive execution
traces produced from multiple use cases. Unfortunately, the
design documentation often does not contain sufficient
information regarding the task structure. This is mainly
because the initial task structure is often changed at later
stages of product integration and fine-tuning when the
design documentation is not actively maintained anymore.
Although the source code contains task creation
instructions and task priorities, it is not easy to determine
from the source code which objects and functions are
allocated to which task and how the objects in a given task
interact with objects in other tasks. Therefore we mainly
focused our efforts on the analysis of execution traces,
which proved to be the easiest way to obtain the needed
information. In our study we mainly relied on the traces
produced by the operating system scheduler. A trace is
produced every time a task is scheduled to run.
Task period is defined as the interarrival interval of
event(s) causing task’s execution. Since such event traces
were not available in our case, we approximate the task
period by the time interval between task’s successive
invocations. The execution time of a task is the time
between an invocation of a task and the invocation of the
next task. We accounted for preemptions by recognizing
them in the traces using a trace at the end of each task’s
response. Unfortunately, we could not identify ways to
discover deadlines from analysis of predefined traces.
Some of the deadlines are due to protocols of interaction
with other systems and cannot be determined from traces in
principle. In this study, we had interviews with software
designers to elicit the deadline information.
Once we have extracted from the traces the observations of
each task’s parameters such as invocations and execution
times, we immediately noticed a number of issues that are
not handled by the fixed priority scheduling methods.

In simple scheduling approaches, each task is characterized
by a single period, deadline, and execution time. Of course,
it is commonly understood that in many cases the tasks are
not perfectly periodic. A typical recommendation from
scheduling literature is to consider the worst case: the
shortest period and the longest execution time.
Unfortunately, in all the use cases we have analyzed such a
recommendation is not useful because none of these use
cases would be schedulable even though we knew that the
system performed fine in practice. Table 1 shows the
extracted data of a communication task for the use case of
file transfer between a laptop and a server over USB and
GPRS. The worst-case period of the task takes 0.4 time
units, while the worst-case execution time takes 20 time
units.

Table 1. Communication task execution times and
periods in file transfer over USB and GPRS

Worst case (longest)
execution time

20 Worst case
(shortest) period

0.4

Average execution
time

1.6 Average period 20.5

Largest cluster
execution time

1.3 Largest cluster
period

1.6

Execution time clusters Period clusters

Time Size Time Size

1.3 4352 1.6 1479

3.1 906 4.3 657

 10.6 562

 20.6 1024

 41.9 1221

 100.9 280

4. Multivariate tasks
The assumption that tasks have a single period and
execution time does not hold in our data. Although it
appears that the task periods and execution times are not
single peak statistical functions, it may be possible to
identify a small set of typical (“peak”) periods and
execution times of a task. We called this a multivariate task
hypothesis.
To verify this hypothesis we developed a data-clustering
algorithm that identifies the presence of multiple clusters
(“peaks”) in observations of task periods and execution
times. We have applied a modified K-means algorithm with
criteria for establishing new clusters and merging not
sufficiently separated clusters. The results of cluster
analysis confirmed the multivariate task hypothesis—most
of the tasks had several characteristic periods and
execution times. For example, a communication task (Table
1) has two execution time clusters and six period clusters in
the given use case. Most of our real-time tasks could be
characterized by a small set of parameter vectors. These

data also indicated that such statistical measures, as average
period and execution time, are not representative of the
mobile device’s task behavior. Although the average
execution time divided by the average period represents the
average processor utilization contributed by a task, this
load does not represent a reliable schedulability measure
[3]. The average may not represent any single cluster. For
example, the average execution time of the task in Table 1
does not correspond to either of the two large execution
time clusters. This observation is typical for other tasks too.
In many cases it is impossible to perform the schedulability
analysis based on just the largest execution-time and period
clusters. For example, the largest period and execution-
time clusters of the task in Table 1 show that this task
would have utilized the processor at 1.3/1.6 ≈ 81%
utilization. Since the system has other tasks as well, such a
high utilization by one task predicts that the system is
unschedulable. However, as we know from experimental
data, this is not the case. So the schedulability analysis
needs to take into account the relationship between
different execution time and period clusters. With such
understanding it may be possible to identify pairs of
compatible period and execution time values.
What causes multiple period and execution time clusters in
a single task? If tasks were designed with runtime
architecture and schedulability in mind, a single task
should be assigned only objects handling a single event
stream [1][5]. However, in real systems, tasks often contain
objects handling more than one stream of events. These
event streams may be independent and have different
periods and execution times. In such case, the observed
periods and execution times of the task handling the events
will no longer have a single peak, instead they will be a
complex superposition of periods and execution times of
different event streams and may not display any
characteristic period at all. In depth understanding of tasks
may allow to separate multiple event streams and determine
periods and execution times characterizing each of them.
We found that this is difficult to achieve from traces and
usually requires domain expert help.

5. Activities
In our system a response to an event may involve multiple
tasks of different priority. The invocation of these tasks is
deterministic in response to an event and thus has to be
seen as a single activity. Furthermore, some responses may
have multiple deadlines for different tasks that constitute
the response. We call multiple task responses to events
activities. An activity starts with an external event, for
example, timer expiration, interrupt, or another similar
event. An activity ends when all tasks involved in the
activity are finished with their responses.
It is evident from extracted activities that phone tasks are
highly dependent on each other. An external event is

handled not by just one task, but by a number of
communicating tasks. This means that whole activities
need to be considered in real-time analysis and scheduling.
Although a single priority cannot be assigned to an activity
composed from multiple tasks, we present a few alternative
ways of dealing with this issue.
First approach is to analyze activities and to assign task
priorities for tasks in activities. Klein et al. [3] and Harbour
et al. [2] show how to determine the schedulability of
systems with activities. However, we did not find any
results that show an optimal priority assignment for
systems with activities. Harbour et al. [2] suggest a
heuristic of assigning priorities to tasks in activities
according to a deadline monotonic algorithm. However,
this approach is proved optimal only for a limited set of
schedules where all tasks in activities have nonascending
priorities. On the other hand, Harbour et al. [2] use the
activity’s canonical form, which is obtained by converting
all task priorities to a nondescending form. It is shown that
the activity completion time is the same for original and
canonical forms. This seems to argue for the use of the
nondescending priority assignment for tasks in an activity.
However, no proof is given that such assignment is “good”.
Consider the simplest situation where there are no internal
deadlines for the tasks in an activity A and no tasks are
shared between activities.
Theorem 1. Conversion of activity A to a canonical form
improves schedulability of the system. (Theorem proofs are
omitted due to lack of space).
Theorem 1 shows that for every schedule in a system with
above constraints there is a better or equal schedule in
which all activities are in canonical forms. Such a schedule
can be constructed by converting each activity in turn into
a canonical form. Therefore the optimal schedule for a
system with no intermediate deadlines in activities and no
tasks shared between activities is a schedule with all
activities in a canonical form.
Unfortunately this result does not hold anymore if the
constraints on the system are changed. If tasks in activities
have internal deadlines, these deadlines can be broken by
the activity conversion to a canonical form. Consider
Figure 2. In it C1 (execution time of task 1) =2, D1 (deadline
of task 1) =2, C2=4, C3=2, TA1 (activity 1 period) =13,
TA2=7. Task 1 satisfies internal deadline of two time units
in the original priority assignment, where it has the highest
priority of all tasks. However, task 1 fails the deadline
when the activity is converted to canonical form and task 1
priority is lowered to the priority of task 3.
Is there an optimal priority assignment in this example such
that all activities are in canonical form? No. P1 (priority of
task 1) has to be greater than P2 for task 1 to satisfy its
internal deadline D1. Which means that P3 ≥ P1 (by
canonical form) > P2. But this is the situation at the bottom

of the Figure 2, where task 2 fails the activity deadline
TA2=7. On the other hand, this task set with a non-
canonical form schedule is schedulable as shown in the top
of the Figure 2.

Time1

2

3

Task 1 fails two time unit deadline after
activity conversion to canonical form2

1 3

Task 1 satisfies two time unit internal deadline

2

3

Task 2 fails activity deadline
after alternative activity

conversion to canonical form

1 3

2

Figure 2. Conversion of activity with internal deadlines
to canonical form

Therefore, if tasks have internal deadlines, the optimal
schedule may not have all activities in canonical form.
If tasks are shared between activities, but no tasks have
internal deadlines, the usefulness of conversion to a
canonical form depends on whether same priority tasks are
allowed and how same priority tasks are scheduled.
Consider Figure 3. In it C1=2, C2=2, C3=1, TA1=6, TA2=12.
Task 2 is shared by both activities. In original priority
assignment P3<P1<P2. Activity 1 is in canonical form,
while activity 2 is not in canonical form. The system is
schedulable. If activity 2 is converted to a canonical form,
P2 becomes equal to P3. However, now activity 1 is not in
canonical form: P2=P3<P1. Now activity 1 is converted into
a canonical form and priorities become P1=P2=P3.
However, the scheduling of such a system depends totally
on the operating system scheduler implementation and in
the “bad” case (Figure 3 bottom) activity 1 fails its
deadline.

Time

2

1

3

Activity 1 fails to satisfy deadline

Both activities satisfy
deadlines

2 1 2

2 3

1 2

Figure 3. Activities with shared tasks
Therefore if activities have shared tasks, the conversion to
the canonical form should be used only if scheduling of
tasks with the same priority and scheduling of the same
task invoked from different activities is well understood.
Systems usually are not designed to have tasks with the
same priorities because then the internal scheduler
implementation determines the processing order of same
priority tasks.
Klein et al. [3] suggest assigning shared tasks a priority that
is higher than priorities of tasks invoking the shared task.

This heuristic avoids the priority inversion between
activities, which can occur otherwise. Klein et al. heuristic
also avoids the situation when a shared task is invoked by
some task that preempted the same shared task. There is no
proof that the heuristic always leads to better schedules.
The second approach to activity scheduling is to simplify
the system by moving all the functionality performed in an
activity into a single task. This allows assigning a single
priority to the activity and using scheduling algorithms for
the priority assignment. However, such reallocation is not
possible if the same task’s actions are needed in different
activities. Reallocation is also impossible if tasks in an
activity have internal real-time constraints. Finally,
reallocation leads to task merging, which, as observed in
[2], reduces overall system schedulability.
Theorem 2. Splitting activity into tasks increases system
schedulability. Merging tasks decreases system
schedulability.
The above theorem assumes zero task-switching overhead.
Task splitting increases the number of task switches, which
increases the overhead due to task switches. This may
become an issue if the task-switching overhead is large.
Harbour et al. [2] proved that any system of two tasks with
deadlines equal to periods and system utilization ≤ 1 is
schedulable by splitting the longer period task into two and
assigning appropriate priorities. As far as we know, there is
no similar proof for an arbitrary number of tasks. For task
sets with deadlines shorter than periods Harbour et al. [2]
result does not hold even for two tasks.
It seems that people scheduling a system are left in a
quandary: they can stay with activities, but not know the
optimal priority assignment, or they can merge tasks
decreasing the system schedulability. In our project, we
could not merge activity tasks, since tasks were invoked
multiple times in an activity and they participated in
multiple activities.

6. References
[1] H. Gomaa, “Designing Concurrent, Distributed, and Real-

Time Applications with UML”, Addison-Wesley, 2000.
[2] M.G. Harbour, M.H. Klein, J.P. Lehoczky, “Timing Analysis

for Fixed-Priority Scheduling of Hard Real-Time Systems,”
IEEE Transactions on Software Engineering, vol. 20, no. 1,
pp. 13-28, IEEE Computer Society Press, 1994.

[3] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M.G. Harbour,
“A Practitioner’s Handbook for Real-Time Analysis: Guide
to Rate Monotonic Analysis for Real-Time Systems”, Kluwer
Academic Publishers, 1993.

[4] J.W.S. Liu, “Real-Time Systems”, Prentice-Hall, 2000.
[5] A. Ran, R. Lencevicius, ”Making Sense of Runtime

Architecture for Mobile Phone Software”, Proceedings of
ESEC/FSE’2003.

	Introduction and application domain
	Featuresets
	Task model for scheduling
	Multivariate tasks
	Activities
	References

