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1. Introduction and application domain 
Last year our research group was requested to study the 
runtime architecture of mobile phone software in order to 
understand whether some performance aspects of the phone 
could be improved. We expected to improve the 
architecture along several dimensions: 
• systematic derivation of task priorities for more 

effective scheduling 
• improve partition into tasks to make the architecture 

more analyzable in terms of performance 
A major part of the runtime architecture improvement work 
was concerned with the scheduling of the mobile device. 
We were aware of the large body of research work in 
fixed-priority system scheduling area [2]-[4]. However, 
when we tried to apply this research in our real-world 
situation, we discovered a number of problems described 
below.  
In this paper we are primarily concerned with embedded 
real-time systems such as mobile phones or personal 
communication devices. Today personal communication 
devices are more than voice call terminals. Mobile phones 
serve as platforms for a variety of mobile applications 
including text and picture messaging as well as personal 
information management, including data synchronization 
with remote servers and desktop computers. Mobile phones 
host a range of communication-centered applications most 
of which have real-time constraints. During a voice call 
speech data must be processed in a timely fashion to avoid 
jitter. During GPRS session lower layer packets arrive 
every 10 ms. These are just few examples of system 
requirements that lead to tight software performance 
constraints. 
To improve the performance of the mobile phone software, 
we concentrated on the runtime software architecture—a 
partition of all software functions into concurrent units and 
a scheduling policy that deliver the best possible service to 
the user with available resources. The units of concurrency 
in most products are operating system tasks. Thus partition 
of software into tasks and allocation of functionality to 
tasks in the form of objects or functions are the most 
important decisions in the design of the runtime 
architecture [5]. In this paper, we focus on the scheduling 
policy and its parameters. Some problems encountered in 
our project can be solved by a different task design. 

However, task redesign often is not feasible in industrial 
setting since it takes long time and has high costs. 

2. Featuresets 
Some of the mobile phone applications must be executed 
concurrently and thus have to be schedulable. However, if 
all applications were executed at the same time, the system 
would not be schedulable. Thus an essential concept in the 
mobile device runtime architecture is a featureset. A 
featureset is a set of concurrently available features. 
Specification of useful featuresets for a given system is an 
architecturally significant requirement. All featuresets have 
to be schedulable.  
System designers identify featuresets by first composing a 
collection of all important use cases. Then designers 
identify subsets of this collection containing use cases that 
may overlap in time. Such subsets contain concurrently 
available features—featuresets. Each use case contains one 
or more execution scenarios. Each scenario is defined by 
one or more sequences of events that occur in the scenario. 
One or more objects handle each event. Each object is 
allocated to one of the concurrent tasks. Therefore, each 
featureset has a mapping to a set of tasks (Figure 1). 
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Figure 1. Runtime Architecture Meta Model 

Tasks that do not belong to the same featureset do not have 
to be collectively schedulable. If tasks that belong to the 
same featureset are not schedulable, some architectural 
decisions regarding allocation of objects to tasks or 
resource scheduling policies must be revised. 
Since each featureset maps to a set of tasks and no other 
tasks can run in this featureset, it seems natural to analyze 
the system and assign priorities separately for each 
featureset. Such priority assignment in fixed priority 
scheduling is called a mode [4]. Although featuresets can 



be implemented as modes and mapped one-to-one to their 
modes, featuresets differ from modes in several aspects. 
Featuresets are a practical way of finding a minimal set of 
events or tasks that belong to a mode. This allows to 
include the smallest number of tasks and therefore the 
smallest number of real-time constraints into a mode. By 
reducing a number or tasks and constraints in a mode, the 
mode becomes more evolvable—additional tasks and 
constraints can be added easier in the future. This mode 
minimization is not discussed in the scheduling literature. 

3. Task model for scheduling  
Whether we are scheduling a mode or a whole system, we 
need to know certain properties of tasks and resources. To 
apply fixed priority scheduling [4], we had to produce a list 
of concurrent tasks and for each task to determine its 
priority, period, execution time, and deadline or constraint 
on response time. We had full access to the design 
documentation, the source code, and extensive execution 
traces produced from multiple use cases. Unfortunately, the 
design documentation often does not contain sufficient 
information regarding the task structure. This is mainly 
because the initial task structure is often changed at later 
stages of product integration and fine-tuning when the 
design documentation is not actively maintained anymore. 
Although the source code contains task creation 
instructions and task priorities, it is not easy to determine 
from the source code which objects and functions are 
allocated to which task and how the objects in a given task 
interact with objects in other tasks. Therefore we mainly 
focused our efforts on the analysis of execution traces, 
which proved to be the easiest way to obtain the needed 
information. In our study we mainly relied on the traces 
produced by the operating system scheduler. A trace is 
produced every time a task is scheduled to run. 
Task period is defined as the interarrival interval of 
event(s) causing task’s execution. Since such event traces 
were not available in our case, we approximate the task 
period by the time interval between task’s successive 
invocations. The execution time of a task is the time 
between an invocation of a task and the invocation of the 
next task. We accounted for preemptions by recognizing 
them in the traces using a trace at the end of each task’s 
response. Unfortunately, we could not identify ways to 
discover deadlines from analysis of predefined traces. 
Some of the deadlines are due to protocols of interaction 
with other systems and cannot be determined from traces in 
principle. In this study, we had interviews with software 
designers to elicit the deadline information. 
Once we have extracted from the traces the observations of 
each task’s parameters such as invocations and execution 
times, we immediately noticed a number of issues that are 
not handled by the fixed priority scheduling methods. 

In simple scheduling approaches, each task is characterized 
by a single period, deadline, and execution time. Of course, 
it is commonly understood that in many cases the tasks are 
not perfectly periodic. A typical recommendation from 
scheduling literature is to consider the worst case: the 
shortest period and the longest execution time. 
Unfortunately, in all the use cases we have analyzed such a 
recommendation is not useful because none of these use 
cases would be schedulable even though we knew that the 
system performed fine in practice. Table 1 shows the 
extracted data of a communication task for the use case of 
file transfer between a laptop and a server over USB and 
GPRS. The worst-case period of the task takes 0.4 time 
units, while the worst-case execution time takes 20 time 
units. 

Table 1. Communication task execution times and 
periods in file transfer over USB and GPRS 

Worst case (longest) 
execution time 

20 Worst case 
(shortest) period 

0.4 

Average execution 
time 

1.6 Average period 20.5 

Largest cluster 
execution time 

1.3 Largest cluster 
period 

1.6 

Execution time clusters Period clusters 

Time Size Time Size 

1.3 4352 1.6 1479 

3.1 906 4.3 657 

  10.6 562 

  20.6 1024 

  41.9 1221 

  100.9 280 

4. Multivariate tasks 
The assumption that tasks have a single period and 
execution time does not hold in our data. Although it 
appears that the task periods and execution times are not 
single peak statistical functions, it may be possible to 
identify a small set of typical (“peak”) periods and 
execution times of a task. We called this a multivariate task 
hypothesis. 
To verify this hypothesis we developed a data-clustering 
algorithm that identifies the presence of multiple clusters 
(“peaks”) in observations of task periods and execution 
times. We have applied a modified K-means algorithm with 
criteria for establishing new clusters and merging not 
sufficiently separated clusters. The results of cluster 
analysis confirmed the multivariate task hypothesis—most 
of the tasks had several characteristic periods and 
execution times. For example, a communication task (Table 
1) has two execution time clusters and six period clusters in 
the given use case. Most of our real-time tasks could be 
characterized by a small set of parameter vectors. These 



data also indicated that such statistical measures, as average 
period and execution time, are not representative of the 
mobile device’s task behavior. Although the average 
execution time divided by the average period represents the 
average processor utilization contributed by a task, this 
load does not represent a reliable schedulability measure 
[3]. The average may not represent any single cluster. For 
example, the average execution time of the task in Table 1 
does not correspond to either of the two large execution 
time clusters. This observation is typical for other tasks too. 
In many cases it is impossible to perform the schedulability 
analysis based on just the largest execution-time and period 
clusters. For example, the largest period and execution-
time clusters of the task in Table 1 show that this task 
would have utilized the processor at 1.3/1.6 ≈ 81% 
utilization. Since the system has other tasks as well, such a 
high utilization by one task predicts that the system is 
unschedulable. However, as we know from experimental 
data, this is not the case. So the schedulability analysis 
needs to take into account the relationship between 
different execution time and period clusters. With such 
understanding it may be possible to identify pairs of 
compatible period and execution time values. 
What causes multiple period and execution time clusters in 
a single task? If tasks were designed with runtime 
architecture and schedulability in mind, a single task 
should be assigned only objects handling a single event 
stream [1][5]. However, in real systems, tasks often contain 
objects handling more than one stream of events. These 
event streams may be independent and have different 
periods and execution times. In such case, the observed 
periods and execution times of the task handling the events 
will no longer have a single peak, instead they will be a 
complex superposition of periods and execution times of 
different event streams and may not display any 
characteristic period at all. In depth understanding of tasks 
may allow to separate multiple event streams and determine 
periods and execution times characterizing each of them. 
We found that this is difficult to achieve from traces and 
usually requires domain expert help. 

5. Activities 
In our system a response to an event may involve multiple 
tasks of different priority. The invocation of these tasks is 
deterministic in response to an event and thus has to be 
seen as a single activity. Furthermore, some responses may 
have multiple deadlines for different tasks that constitute 
the response. We call multiple task responses to events 
activities. An activity starts with an external event, for 
example, timer expiration, interrupt, or another similar 
event. An activity ends when all tasks involved in the 
activity are finished with their responses. 
It is evident from extracted activities that phone tasks are 
highly dependent on each other. An external event is 

handled not by just one task, but by a number of 
communicating tasks. This means that whole activities 
need to be considered in real-time analysis and scheduling. 
Although a single priority cannot be assigned to an activity 
composed from multiple tasks, we present a few alternative 
ways of dealing with this issue. 
First approach is to analyze activities and to assign task 
priorities for tasks in activities. Klein et al. [3] and Harbour 
et al. [2] show how to determine the schedulability of 
systems with activities. However, we did not find any 
results that show an optimal priority assignment for 
systems with activities. Harbour et al. [2] suggest a 
heuristic of assigning priorities to tasks in activities 
according to a deadline monotonic algorithm. However, 
this approach is proved optimal only for a limited set of 
schedules where all tasks in activities have nonascending 
priorities. On the other hand, Harbour et al. [2] use the 
activity’s canonical form, which is obtained by converting 
all task priorities to a nondescending form. It is shown that 
the activity completion time is the same for original and 
canonical forms. This seems to argue for the use of the 
nondescending priority assignment for tasks in an activity. 
However, no proof is given that such assignment is “good”. 
Consider the simplest situation where there are no internal 
deadlines for the tasks in an activity A and no tasks are 
shared between activities. 
Theorem 1. Conversion of activity A to a canonical form 
improves schedulability of the system. (Theorem proofs are 
omitted due to lack of space). 
Theorem 1 shows that for every schedule in a system with 
above constraints there is a better or equal schedule in 
which all activities are in canonical forms. Such a schedule 
can be constructed by converting each activity in turn into 
a canonical form. Therefore the optimal schedule for a 
system with no intermediate deadlines in activities and no 
tasks shared between activities is a schedule with all 
activities in a canonical form. 
Unfortunately this result does not hold anymore if the 
constraints on the system are changed. If tasks in activities 
have internal deadlines, these deadlines can be broken by 
the activity conversion to a canonical form. Consider 
Figure 2. In it C1 (execution time of task 1) =2, D1 (deadline 
of task 1) =2, C2=4, C3=2, TA1 (activity 1 period) =13, 
TA2=7. Task 1 satisfies internal deadline of two time units 
in the original priority assignment, where it has the highest 
priority of all tasks. However, task 1 fails the deadline 
when the activity is converted to canonical form and task 1 
priority is lowered to the priority of task 3. 
Is there an optimal priority assignment in this example such 
that all activities are in canonical form? No. P1 (priority of 
task 1) has to be greater than P2 for task 1 to satisfy its 
internal deadline D1. Which means that P3 ≥ P1 (by 
canonical form) > P2. But this is the situation at the bottom 



of the Figure 2, where task 2 fails the activity deadline 
TA2=7. On the other hand, this task set with a non-
canonical form schedule is schedulable as shown in the top 
of the Figure 2. 
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Figure 2. Conversion of activity with internal deadlines 
to canonical form 

Therefore, if tasks have internal deadlines, the optimal 
schedule may not have all activities in canonical form. 
If tasks are shared between activities, but no tasks have 
internal deadlines, the usefulness of conversion to a 
canonical form depends on whether same priority tasks are 
allowed and how same priority tasks are scheduled. 
Consider Figure 3. In it C1=2, C2=2, C3=1, TA1=6, TA2=12. 
Task 2 is shared by both activities. In original priority 
assignment P3<P1<P2. Activity 1 is in canonical form, 
while activity 2 is not in canonical form. The system is 
schedulable. If activity 2 is converted to a canonical form, 
P2 becomes equal to P3. However, now activity 1 is not in 
canonical form: P2=P3<P1. Now activity 1 is converted into 
a canonical form and priorities become P1=P2=P3. 
However, the scheduling of such a system depends totally 
on the operating system scheduler implementation and in 
the “bad” case (Figure 3 bottom) activity 1 fails its 
deadline. 
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Figure 3. Activities with shared tasks 
Therefore if activities have shared tasks, the conversion to 
the canonical form should be used only if scheduling of 
tasks with the same priority and scheduling of the same 
task invoked from different activities is well understood. 
Systems usually are not designed to have tasks with the 
same priorities because then the internal scheduler 
implementation determines the processing order of same 
priority tasks. 
Klein et al. [3] suggest assigning shared tasks a priority that 
is higher than priorities of tasks invoking the shared task. 

This heuristic avoids the priority inversion between 
activities, which can occur otherwise. Klein et al. heuristic 
also avoids the situation when a shared task is invoked by 
some task that preempted the same shared task. There is no 
proof that the heuristic always leads to better schedules.  
The second approach to activity scheduling is to simplify 
the system by moving all the functionality performed in an 
activity into a single task. This allows assigning a single 
priority to the activity and using scheduling algorithms for 
the priority assignment. However, such reallocation is not 
possible if the same task’s actions are needed in different 
activities. Reallocation is also impossible if tasks in an 
activity have internal real-time constraints. Finally, 
reallocation leads to task merging, which, as observed in 
[2], reduces overall system schedulability.  
Theorem 2. Splitting activity into tasks increases system 
schedulability. Merging tasks decreases system 
schedulability. 
The above theorem assumes zero task-switching overhead. 
Task splitting increases the number of task switches, which 
increases the overhead due to task switches. This may 
become an issue if the task-switching overhead is large. 
Harbour et al. [2] proved that any system of two tasks with 
deadlines equal to periods and system utilization ≤ 1 is 
schedulable by splitting the longer period task into two and 
assigning appropriate priorities. As far as we know, there is 
no similar proof for an arbitrary number of tasks. For task 
sets with deadlines shorter than periods Harbour et al. [2] 
result does not hold even for two tasks.  
It seems that people scheduling a system are left in a 
quandary: they can stay with activities, but not know the 
optimal priority assignment, or they can merge tasks 
decreasing the system schedulability. In our project, we 
could not merge activity tasks, since tasks were invoked 
multiple times in an activity and they participated in 
multiple activities.  
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