
Natural Language Query System for RDF Repositories

Alexander Ran1 Raimondas Lencevicius2

1 e-mail: Alexander.Ran@gmail.com

,2 Nokia Research Center Cambridge, 3 Cambridge Center, Cambridge, MA 02142
e-mail : Raimondas.Lencevicius@nokia.com

Abstract
We report insights gained from a
project of enabling natural language
question answering using information
stored in RDF repositories targeted to
mobile phones users. We present ways
of improving portability of natural
language interfaces across different data
domains based on the Natural Query
(NQ) system. NQ enables portable NLI
to RDF repositories, can effectively
rank different semantic interpretations
of a natural language questions with
respect to information in RDF
repository. NQ can retrieve information
that answers the question and can be
used for additional explanation,
disambiguation or guiding the dialog.
We have successfully applied NQ to
creating natural language access
capability for mobile device data and
for two externally hosted repositories –
a corporate personnel directory and a
job search database.

1 Introduction

This paper presents selected insights we
gained from a project of enabling natural
language question answering using information
stored in RDF repositories and targeted to
mobile phones users. Can we treat semantic
repositories as models for assigning semantics to
natural language questions? What data structures
and functionality must be added to data access
systems in order to maximally automate their
integration with language interfaces?

Because we are interested in using language-
based interaction on mobile devices, our
research focused on whether it is possible to
change the architecture of NLIDB in order to
increase portability, limit computational

complexity of the language components and
maximally automate the process of integration
between language systems and databases.

We consider the database to be a domain
model including a limited and controlled amount
of domain knowledge. We limit the function of
the language system to dealing with domain
independent lexicon and grammar while relying
on the database to provide all necessary
information for semantic interpretation of
natural language requests.

We researched the following questions:
• What information needs to be stored in the

database to enable automatic derivation of the
domain-specific lexicon?

• What are the principles of ontology/schema
design that make it possible to infer expected
linguistic patterns or acceptable grammar for
referencing information in the database?

• How to design a query engine that can
retrieve data only using the information derived
from the natural language question, in essence
using underspecified semantic interpretation as a
query language?

• How can we use the information in the
database to disambiguate natural language
questions (ranking the alternative representation
of meaning produced by the language
understanding systems)?

• What information must be returned by the
query engine in order to facilitate language
based interaction (no information, too much
information, partial satisfaction of query, etc.)?

The main goal of the work presented in this
paper was to investigate ways of improving
portability of natural language interfaces across
different databases. We have designed and
implemented the Natural Query system that
enables portable NLI to RDF repositories, can
effectively rank different semantic
interpretations of a natural language questions
with respect to information in RDF repository.
NQ can retrieve information that answers the

question and can be
used for additional
explanation,
disambiguation or
guiding the dialog.
We have
successfully applied
NQ to creating
natural language
access capability for
mobile device data
and for two
externally hosted
repositories – a
corporate personnel
directory and a job
search database.

The paper presents analysis of the problem
(Section 2), explains our solution (Section 3)
briefly summarizes our experience of applying
this solution in several domains (Section 4).

2 Problem Analysis

We draw many of our examples from the
system we have built to provide question
answering over Personal Information
Management (PIM) repository on a mobile
phone. Our repository contained information
about contacts—people and organizations—
including their phone numbers, postal and email
addresses, and affiliations; calendar information
including meetings with their locations and
participants; call logs and messages sent and
received on the mobile devices, and user
location information. Figure 1 shows a part of
the mobile PIM ontology that we used in our
experiments.

Let us assume the user asks the system about
contacts they have in some organization and
geographical location:

Who do I know at IBM Ulm?
Who are my contacts at IBM in Ulm?
What are the names of my contacts at IBM in
Ulm?

In the context of question answering using
information in the PIM repository the
operational semantics of these questions can be
adequately represented with a database query.
Let us consider how this request would need to
be posed to an RDF [1] repository shown on
Figure 1. SPARQL [3] query corresponding to

our example question over the PIM repository is
shown below:

SELECT DISTINCT ?person ?givenName
?familyName
FROM <http://localhost/pim.rdf>
WHERE {?person a pim:Person;
pim:givenName ?givenName;
pim:familyName ?familyName;
pim:affiliation ?affiliation; pim:address
?person_address.
?affiliation pim:organization ?organization.
?organization pim:address
?organization_address; pim:name “IBM”.
{?person_address pim:locality “Ulm”}
UNION
{?organization_address pim:locality
“Ulm”}}

Unfortunately in order for a language system
to generate such semantic representation from
the original questions, the language system must
contain a large amount of information about the
structure of the database and its content. Such
information includes the facts that according to
our repository IBM is a name of an organization
and Ulm is a name of a city, cities can be related
to organizations through their addresses,
organizations are related to people through their
affiliations, people are related to cities through
their home and office addresses, and all these
relationships and objects are represented by the
specific structures and entities of the database.

Entering such information into a language
system is a tedious and costly process that is not
only domain dependent but also is sensitive to
specific choices of database organization.

givenName

Person

familyName homeAddress workAddress affiliation

Address

Affiliation

streetpcodelocalityregioncountry

title organization

Organizationname

address

rangerange

range

range

range

Figure 1 Part of Mobile PIM Ontology

This is a problem of software architecture. It
should be possible to achieve the partition of
functionality and information in such a way that
much of the complexity of linguistic processing
can be completely separated and independent of
the specific domain, organization and content of
the data repository. The rest of the functionality
can be performed by the second component that
will carry out the domain dependent parts of
language analysis and integrate directly with the
repository utilizing direct access to its structure
and content. If it were possible to achieve
seamless integrations of these components it
would amount to retargetable or portable natural
language interface to data repositories.

3 Natural Query System

Natural Query (NQ) system is our proof of
concept realization of an architecture that solves
the problem identified in the previous section.

We process a natural language question in
five stages.

1. semantic tagging
2. parsing
3. abstract semantic interpretation
4. concrete semantic interpretation
5. heuristic ranking

3.1 Semantic tagging
Semantic tagging stage performs two distinct

functions: value tagging and category tagging.

3.1.1 Value tagging

Value tagging marks all multiword tokens in
the question that correspond to values stored in
the database. The tags associated with these
tokens identify the category of the value. Thus
token “John” would be tagged as
Person.givenName assuming that the repository
contains a value “John” associated with the
givenName property of an object of class
Person. Value tagging process also includes
recognition of expressions for regular ordered
value types such as numbers, time, and date. In
some cases values in the question may not be
present in the repository, while being used to
form interval inclusion questions like in “who
sent me a dinner invitation last week?” In this
question “last week” translates into a data
interval whose end points may or may not be
present as explicit values in the repository.

Nevertheless such value expressions will be
marked with their potential categories. These
categories include all properties whose values
range over identified regular type. Syntactically
both types of value tags look identical.

3.1.2 Category tagging

Category tagging identifies potential
references to database entities such as classes
and properties. To make this possible some
lexical and (minimal) grammar information
must be associated with the database entities.
We call these annotations of database structure
“language tags”.

Language tags are words, expressions, and
linguistic labels attached to the database
elements such as classes and properties.
Multiple tags can be attached to a single element
and a single tag can be attached to multiple
elements. We use language tags to generate
information for language understanding system
about terms that might be used to refer to the
information in the database.

Many questions result in multiple possible
semantic taggings. Some of the ambiguity is
resolved in the next stage, which is parsing.

3.2 Parsing
The parser is automatically configured with

part of speech information for all category tags.
This allows us to use a generic parser and
grammar with little or no domain dependency to
process semantically tagged utterances. In this
process the parser accomplishes several
functions. Taggings that do not produce a parse
are rejected. If probabilistic model is available,
alternative parses are ranked accordingly. The
parser also identifies the focus of the question
and most probable attachment of the phrases.

The use of a generic domain-independent
grammar might be problematic in some domains
and we are planning to explore generating
semantic grammar using the organization of the
database, language tags, and some additional
grammar annotations associated with the
database entities.

3.3 Abstract semantic representation
For each parse of the question we generate an

underspecified (abstract) semantic interpretation

or meaning representation. Thanks to semantic
tagging, focus and attachment resolutions
performed by the parser for the example
question “what are the names of my contacts at
IBM in Ulm?” we now know that

1. “Ulm” is a value of a category
Locality.name

2. “IBM” is a value of the category
Organization.name

3. “contact” is a reference to the class
Contact

4. “name” is a reference to one of the
many name attributes that is attached by
the parser to the Contact

This information is sufficient to generate an
abstract meaning representation shown below
using binary infix predicates
that correspond to database
categories identified by
semantic tagging process:

(x name ?v)
(x type Contact)
(x Organization.name IBM)
(x Locality.name Ulm)

However a straightforward
interpretation of this
representation as an RDF query
that requires binding of
variables using the facts in the
repository would not work
because Contact instances in
our repository do not have such
properties as Locality.name or
Organization.name (but are related
to these categories through other properties). We
call this meaning representation underspecified
because it requires further interpretation before
the requested action of information retrieval can
be performed.

A proper interpretation of this meaning
representation rests on the notion of
semantically related entities.

An RDF database or repository is commonly
conceptualized as a graph. We consider two
nodes n1 and n2 of an RDF repository
semantically related over selected class and
predicate domain D if there exists a path of
predicates from D that connects these nodes.
Specifying a predicate domain allows excluding
semantic relations over meta domains
established for example by RDFS predicates or
to simply separate domains of interest.

The meaning representation generated at this
stage is underspecified because it only partially
specifies the path between two nodes in the
repository. This partial specification is an
ordered list of classes and predicates that lie on
the path but do not cover it and are not
necessarily adjacent to each other.

Under the NQ system the interpretation of
the above meaning representation is “return the
values of attributes tagged as “name” of an
instance of the class tagged as “Contact”
related through properties tagged as
“Organization.name” and “Locality.name” to
values “IBM” and “Ulm” respectively”.

3.4 Concrete semantic representation
What is missing from the abstract meaning

representation compared to a formal database
query is the information about the organization
of the database. In order to navigate from given
attributes of an object to the target of the query,
the system needs to know the specific path that
must be taken on the database graph. Thus a
query defines a subgraph with given properties
some of which are specified in the abstract
meaning representation of the natural language
request but not all.

While a SPARQL query defines a connected

subgraph as illustrated in Figure 2, the abstract
meaning representation only specifies selected
nodes and edges of this subgraph. Such nodes

Joe Lee homeAddress workAddress affiliation

title organization

address

streetpcodelocalityregioncountry

streetpcoderegioncountry

streetpcodelocalityregioncountry

Person

Joe Lee homeAddress workAddress affiliation

title organization

address

streetpcodelocalityregioncountry

streetpcoderegioncountry

streetpcodelocalityregioncountry

Person

Ulm
IBM

Figure 2. Query defines a subgraph

and edges may be disconnected. In the example
above the meaning representation contains the
Contact and the Organization classes as well as
“Ulm” value of the name property of a Locality
instance and “IBM” as a value of the name
property of an instance of Organization class.

Looking at Figure 2, one can notice that for a
given set of elements identified by the abstract
meaning representation it is possible to generate
a set of possible concrete semantic
interpretations by searching the database graph.
Such a set includes all minimal connected
subgraphs spanning the nodes and arcs (subjects,
objects and predicates) identified by the abstract
meaning representation.

3.5 Ranking
In most cases there are multiple connected

subgraphs that span all given elements.
Therefore we need a way to rank them in terms
of suitability as a concrete semantic
interpretation of the question. It is most
attractive to base such ranking on the structural
properties of the retrieved subgraphs. It would
make ranking functionality domain independent
and portable across different repositories. This is
only possible if we impose constraints on the
structure of the database graph itself. In other
words it is only possible to use the structure of
the database subgraphs for semantic ranking if
the structure has semantic significance in the
first place.

In fact the notion of semantic relatedness that
we introduced earlier already attributes meaning
to the structure of the repository. This meaning
agrees with common intuition that items
connected through the database organization are
also semantically related in the domain. It is
worthwhile however to make this assumption
explicit. We call this semantic relatedness rule
(SRR).

Another requirement is necessary in order for
us to deal with asymmetric relations. Let us
consider a general many-to-many mapping
between objects of two classes like, for example,
people and phone numbers. For each person we
have a set of associated phone numbers and for
each phone number we have a set of associated
people. The fact that a person x has a phone
number y can be either represented with a triple
(x phone-number y) or a triple (y phone-number
x). Unless we adopt one of the representations as

standard there is no way to decide whether a
subgraph that connects a Phone number and a
Person instances constitutes an acceptable
semantic interpretation for questions like “What
is the phone number of Alex?” or “Whose phone
number is 888 555 3535?” The distinction
between the two representations corresponds to
active vs. passive voice. The first representation
corresponds to the statement “x owns (or has)
phone number y”. The second representation
corresponds to the statement “phone number y
belongs to (is owned by) x”.

The same situation may exist when
representing an asymmetric relation between
two objects of the same class. What meaning
does the structure (Jane manager John)
represent? Does it mean that Jane is a manager
of John, or John is Jane’s manager?

In NQ we eliminate this ambiguity of
representation by requiring that language tags
that describe a relation be used with active voice
of verbs. Noun tags correspond to noun phrases
of verbs is, has, contains. We call this the active
voice rule (AVR).

If the Active Voice Rule is followed in the
design of ontology, language tags attached to
properties acquire a well-defined meaning and
can be used by NQ for semantic interpretation of
natural language questions.

The most important hypothesis we explored
in the design of NQ is that if the ontology is
“properly” designed, the weight of retrieved
subgraphs, calculated as the total weight of their
edges, would negatively correlate with their
appropriateness as semantic interpretation of the
question over the given repository. In other
words more compact subgraph that spans all
relevant nodes is considered to be a better
semantic interpretation of a given question. This
hypothesis suggest the following principle for
ontology design: if a subject is related to two
different properties that share a language tag, the
weight of the edges leading from the subject to
these properties should be such that the property
that corresponds to the better semantic
interpretation of the query binding the property
tag to a value would have smaller weight (or
shorter path if we assume that all edges have the
same weight).

Consider the interpretation of the question:
“Who is the director of ABC?”. “Who” is a
language tag of the properties “first name” and
“last name” of the class Person, “director” is a

value of the property “title” of the class
Affiliation. “ABC” is a value of the property
“name” of the class Organization. With this
information we generate the following meaning
representation:

(x firstName ?)
(x lastName ?)
(x type Person)
(x Affiliation.title director)
(x Organization.name ABC)

This query will return correct results as long
as a person is only affiliated with a single
organization and is only related to organizations
by affiliation. However if there were another
property in the Person class with the range of
values in Organization class it could lead to
incorrect interpretations of the above question.

We need to differentiate the cases when a
person has a title of director in their affiliation
with ABC, when a person has a title of director
with another organization and is also affiliated
with ABC, and when a person has a title of
director with some organization while being
related to ABC, but not through their affiliation.
Should we have a need to relate a person to
organizations by other than affiliation property,
we have to associate appropriate tags with the
two properties or assign weights to the edges
that will help identify the correct interpretation
of the question.

Based on our experiments it appears that
following these three principles allows heuristic
ranking that matches well our intuition and
language understanding.

4 Experiments

We have used NQ system for question
answering experiments over semantic
repositories in several domains. These included:

• personal information repository on the
mobile device covering contact information of
people and organizations, call and message logs,
and calendar information of meetings,
reminders, and other events

• intranet corporate phonebook covering
contact information of employees, their position
in the organization, organizational information
of groups, managers, secretaries, colleagues, etc.

• CIA World Factbook covering extensive
information about countries and governments

• job search repository extracted from an
internet job search site.

The most extensive experiment was in the
job search domain. The repository contained
detailed descriptions of over 70,000 job offers.
We collected more than 5000 different natural
language questions for the domain. All the
questions mapped into 300 different queries. All
queries executed successfully. We verified
results of 25 queries corresponding to about 200
questions. Since NQ expressions are
underspecified queries and their evaluation
involves heuristic search, it is interesting to
measure precision and recall capabilities of NQ
compared to a completely specified queries over
the same repository. The system demonstrated
100% precision and close to 100% recall. The
recall below 100% is due to situations that
require backtracking. This is currently under
development and will be supported in the next
version of NQ.

5 Conclusions

We have designed and implemented NQ
system and tested it in several domains. Our
experience demonstrates that the system can be
used to construct portable NLI to semantic
repositories designed according to a few
principles of language friendly ontology design.
We have defined these principles and verified
them on several ontologies.

Acknowledgement
We want to thank Stephanie Seneff of

MIT/CSAIL for providing her expertise and
powerful language processing software [2] and
helping us to construct the question answering
system described in this paper.

References
1. Resource Description Framework,

http://www.w3.org/RDF/ , 2007.
2. S. Seneff, E. Hurley, R. Lau, C. Pao,

P. Schmid, and V. Zue, "GALAXY-
II: A Reference Architecture for
Conversational System
Development," Proc. ICSLP 98,
Sydney, Australia, November 1998.

3. SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-
query/, 2007.

