
Query-Based Debugging

UNIVERSITY OF CALIFORNIA
Santa Barbara

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy in Computer Science

by Raimondas Lencevicius

Technical Report TRCS 99–27

Committee in charge:

Professor Urs Hölzle, co-chair
Professor Ambuj Kumar Singh, co-chair

Professor Anurag Acharya
Professor Teofilo Gonzalez

Professor Martin Rinard
Professor Jianwen Su

August 1, 1999

The dissertation of Raimondas Lencevicius is approved:

Professor Anurag Acharya

Professor Teofilo Gonzalez

Professor Martin Rinard

Professor Jianwen Su

Professor Ambuj Kumar Singh, co-chair

Professor Urs Hölzle, co-chair

June 1999
ii

June 4, 1999

Copyright by

Raimondas Lencevicius

1999
iii

s

 I can
 I want
earch
ion in
earch.
 parent,
ölzle

ru-like
s and
bject-
ibuted
ino.

a Nim
of Zen.
anks
, Jane
im

ewell,
attain

tayed
lways
lways
and in
her
puter
uidzinas
. My

 with
 and
rapher
en.
Acknowledgments
The only thing more reliable than magik i
one’s friends,

Macbeth1

Six years spent at the University of California, Santa Barbara is a long time period, and
only hope to thank most of the people who influenced me over these years. First of all,
to express my gratitude to my advisors. Dr. Ambuj Kumar Singh invited me to his res
group and supported me in every way even when I changed my research direct
midstream. He continued to provide invaluable ideas and critique about my thesis res
Although sometimes our exchanges were as heated as these of a teenager and his
Ambuj always found a way to understand me and help me in my research. Dr. Urs H
proposed the idea for my thesis project and continued to help with keen insights and gu
implementation techniques. I continue to be amazed with Urs’s knowledge of system
their implementation methods, as well as his relentless work on the optimization of o
oriented systems. I want to thank all the members of the OOCSB group and the distr
systems laboratory for comments and discussions on both computer science and El N

My main influence outside the UCSB walls was the keen-eyed teaching of Dae Soen S
(Zen Master Seung Sahn) and all the teachers and students of the Kwan Um School
They helped me to discover what this life is all about, and what is my direction in it. Th
Ji Bong Soen Sa, Paul Park JDPSN, Jeff Kitzes JDPSN, Soeng Hyang Soen Sa
McLaughlin-Dobisz JDPSN, Morgan Riley, Paul Lynch, Julia Murakami, Bridget Duff, T
Colohan, Joel Feigin, Mu Sang Sunim, Mu Ryang Sunim, Adam Cherensky, Jacob N
Dove Woeltjen, Agne Talmantaite. Thanks brothers and sisters, and may you all
enlightenment and save all beings from suffering.

My deep gratitude extends to my family and friends who nudged, pushed or simply s
with me over the years preceding the UCSB and during the studies here. My mother a
remained a pillar of strength and understanding. We did not always agree, but we a
stayed close and supported each other through the radical changes of life here
Lithuania. I’ll always remember my grandmother who died after I left Lithuania for all
kindness in raising me. My father had the vision to direct me into the discipline of com
science and to encourage me to pursue graduate studies at the UCSB. Dr. Jonas Zm
helped me with the graduate application process and my first months of life in the USA
landlady Ingeborg Comstock provided a warm German home in Goleta together
companionship in watching movies and arguing about the meaning of life. I lived
breathed my graduate life together with the branch-prediction genius, poet and photog
extraordinaire, the friend who understood me better than I did myself—Dr. Karel Dries

1 Unless otherwise noted, all quotes at the beginning of chapters are from “The Myth Books” by Robert Asprin [17]
iv

ties:
linda
hythm
movie

fetz—
dent
 for
Finally, I want to thank all the people whom I met at my various extracurricular activi
Steve Ota Sensei, Peter Slaughter, Claudia Tyler, Michael Little, Faina Khait, Be
Braunstein, and all Aikido students; Ken Ota Sensei, Ginger Gelhaus, Fascinating R
Dance Center teachers, and all my ballroom dance partners; Maciej Jesmanowicz—
buff, programming wizard, and bright Polish soul; Dr. Jan Frodesen and Dr. Janet Kay
two ESL teachers not only perfect in their work, but also in their appreciation of stu
written fiction and non-fiction; merry folks from SCA and especially lady Isabel D’Triana
all the medieval fun; Douglas Chang for our discussions on growth versus value.
v

rbara.

rbara.

ech-

rated
ronomic

d 3D
futures

tative,
Vita

Personalia

Surname: Lencevicius
Given names: Raimondas
Place of Birth: Kaunas, Lithuania
Date of Birth: September 7, 1969
Nationality: Lithuanian
Address: Department of Computer Science

University of California Santa Barbara
CA 93106
USA

Telephone: (1-805) 893-4178
Fax: (1-805) 893-8553
E-mail: raimisl@cs.ucsb.edu
URL: http://www.cs.ucsb.edu/~raimisl

Education

Diploma in Applied Mathematics (Vilnius University, Lithuania, June 1992)
Thesis: “3D graphics system prototype for Microsoft Windows”

Experience

Research Assistant. Department of Computer Science, University of California, Santa Ba
1994—Current:
Query-based debugging of object-oriented programs.
Aggregation and design patterns in object-oriented systems.

Teaching Assistant. Department of Computer Science, University of California, Santa Ba
1993—Current:
Taught discussion sections in lower and upper division undergraduate courses.

Programmer Aide. Laboratory of Infrared and Submillimeter Astronomy, California Institute of T
nology. June 1994–September 1994.
Implemented X Windows graphical interface for custom data acquisition hardware. Coope
in developing data conversion programs between Sybase SQL database and custom ast
data.

Programmer. ImPro Ltd., Vilnius, Lithuania. January 1992–August 1993.
Applications development for graphics and futures trading systems. Developed 2D an
graphics systems and utilities using OO techniques in a team environment. Implemented
trading system based on personal research on neural networks.

Computer Science Graduate Student Association Officer, Facilities Committee Represen
September 1997–Current.
vi

, and
-

r

h. In
ing
cience

Ambuj
Publications

“Query-Based Debugging of Object-Oriented Programs,” Raimondas Lencevicius, Urs Hölzle
Ambuj K. Singh. InProceedings of the 12th Annual Conference on Object-Oriented Program
ming, Systems, Languages, and Applications (OOPSLA’97), pp. 304-317, Atlanta, GA, Octobe
1997, Published as SIGPLAN Notices 32(10), October 1997.

“Dynamic Query-Based Debugging,” Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Sing
Proceedings of the 13th Annual European Conference on Object-Oriented Programm
(ECOOP’99), Lisbon, Portugal, June 1999, Published as Lecture Notes on Computer S
1628, Springer-Verlag, 1999.

“Fault Tolerance Bounds for Memory Consistency,” Jerry James, Raimondas Lencevicius and
K. Singh. Submitted for publication.
vii

us and
use of
e error
ditional
bridge
em to
ships

s and
-based
offers

es and
rs of

using a
ivery.

t error
gged
ted in
ration,
l show
actical

ciently
Abstract

Object relationships in modern software systems are becoming increasingly numero
complex. Program errors due to violations of object relationships are hard to find beca
the cause-effect gap between the time when an error occurs and the time when th
becomes apparent to the programmer. Although debugging techniques such as con
and data breakpoints help to find error causes in simple cases, they fail to effectively
the cause-effect gap in many situations. Programmers need new tools that allow th
explore objects in a large system more efficiently and to detect broken object relation
instantaneously.

Many existing debuggers present only a low-level, one-object-at-a-time view of object
their relationships. We propose a new solution to overcome these problems: query
debugging. The implementation of the query-based debugger described here
programmers an effective query tool that allows efficient searching of large object spac
quick verification of complex relationships. Even for programs that have large numbe
objects, the debugger achieves interactive response times for common queries by
combination of fast searching primitives, query optimization, and incremental result del

Dynamic query-based debuggers extend query-based debugging by providing instan
alerts. In other words, they continuously check inter-object relationships while the debu
program is running. To speed up dynamic query evaluation, our debugger (implemen
portable Java) uses a combination of program instrumentation, load-time code gene
query optimization, and incremental reevaluation. Experiments and a query cost mode
that selection queries are efficient in most cases, while more costly join queries are pr
when query evaluations are infrequent or query domains are small.

We thus demonstrate that query-based debugging is a useful method that can be effi
implemented and effectively used in program debugging.
viii

....... 2

....... 5
....... 6
........ 6
....... 7
........ 7
........ 8
...... 8
....
..... 10
..... 10
..... 11
....
...... 11
..... 12
...... 12
.

...... 15

..
...... 1
.....
.....
..... 20
.... 21
...
...... 23
.... 26
.... 27
..... 2
... 29
.....
..... 32
..... 33
...... 3
...... 34
..... 36
Table of Contents

1 Introduction ... 1
1.1 Problem Statement and Motivation ...
1.2 Contributions .. 2
1.3 Overview .. 4

2 Debugging—Background and Related Work ...
2.1 Control Flow Debugging ...
2.1.1 Breakpoints and Single Stepping ..
2.1.2 Conditional Breakpoints ..
2.1.3 Language Constructs ...
2.1.4 Breakpoints and Testing Code ..
2.1.5 Method Call Animation ..
2.2 Data Observation .. 9
2.2.1 Memory Inspection ..
2.2.2 Data Structure Display Tools ...
2.2.3 Data Filtering and Summary Tools ..
2.3 Mixed Constructs ... 11
2.3.1 Data Breakpoints ...
2.3.2 Program Slicing ...
2.4 Program Visualization Systems ...
2.5 Summary ... 13

3 Static Query-Based Debugging ...
3.1 Introduction .. 15
3.2 Query Model .. 16
3.2.1 Assumptions ..7
3.2.2 Discussion .. 18
3.2.3 Examples .. 20
3.2.3.1 The Self Graphical User Interface ..
3.2.3.2 Understanding the Cecil Compiler ..
3.3 Implementation ... 22
3.3.1 General Structure of the System ...
3.3.2 Enumerating All Objects in a Domain ..
3.3.3 Overview of Query Execution ..
3.3.4 Join Ordering ...8
3.3.5 Maximum-Selectivity Heuristic ...
3.3.6 Hash Joins .. 30
3.3.7 Incremental Delivery ..
3.3.8 Related Work ...
3.4 Experimental Results ...4
3.4.1 Benchmark Queries ...
3.4.2 Execution Time ..
ix

..... 3
..... 38
.....
..
.

...... 43

...... 44

...... 45
...
...... 46
...... 47
..... 50
.... 51
.... 52
..... 53
..... 54
..... 55
.... 55
.... 57
.... 59
...... 6
...... 62
..... 63
..... 6
..... 67
...... 67
..... 68
...... 6
..... 70
...... 73
..... 75
.... 77
..... 77
..
.

..... 85

...... 85

....

.. 86
..... 86
..... 87
3.4.3 Join Ordering ...7
3.4.4 Incremental Delivery ..
3.4.5 Hash Joins .. 39
3.5 Related work .. 40
3.6 Summary ... 41

4 Dynamic Query-Based Debugger ...
4.1 Introduction .. 43
4.2 Query Model and Examples ...
4.2.1 Ideal Gas Tank Example ...
4.3 Implementation ... 46
4.3.1 General Structure of the System ...
4.3.2 Java Program Instrumentation ..
4.3.3 Change Monitoring ..
4.3.4 Domain Collection Maintenance ..
4.3.5 Overview of Query Execution ..
4.3.5.1 Incremental Reevaluation ...
4.3.5.2 Custom Code Generation for Selection Queries ...
4.3.6 Related Work ...
4.3.6.1 Runtime Information Gathering Techniques ...
4.3.6.2 Load-Time Code Instrumentation ..
4.3.7 Dynamic Query Debugger Implementations for Other Languages
4.4 Experimental Results ...0
4.4.1 Benchmark Queries ...
4.4.2 Execution Time ..
4.4.3 Optimizations ...7
4.4.3.1 Incremental Reevaluation ...
4.4.3.2 Custom Generated Selection Code ..
4.4.3.3 Same Value Assignment Test ..
4.5 Performance Model ..9
4.5.1 Debugger Invocation Frequency ..
4.6 Queries with Changing Results ..
4.7 On-the-fly Debugging ...
4.7.1 Alternative Implementations ...
4.7.2 Experimental Results ...
4.8 Related Work .. 80
4.9 Summary ... 82

5 Query Analysis and Classification ...
5.1 Introduction .. 85
5.2 Queries in Software Systems ...
5.2.1 Networks ... 86
5.2.1.1 Simulation of a Cellular Communication Network. ..
5.2.1.2 Token-Based Network ..
5.2.2 Graphical User Interfaces ..
x

..... 87
..... 88
..... 88
...... 89
.... 89
.... 90
..... 91
..... 91
...... 91
...... 91
..... 92
...... 9
..... 92
....... 92
..... 93
..... 93
...... 93
.... 94
...... 94
.... 94
..... 94
..... 95
..... 96
... 10
... 102
.

.... 105

.... 105
... 106
.... 108
.... 108
.... 109
... 111

... 129

..
5.2.2.1 The Self Graphical User Interface ..
5.2.2.2 Graphical Object Properties ..
5.2.2.3 SPECjvm98 Ray Tracer ..
5.2.3 Programming Systems ..
5.2.3.1 Self Virtual Machine ..
5.2.3.2 Understanding the Cecil Compiler ..
5.2.3.3 Javac Compiler ...
5.2.3.4 Decaf Compiler ...
5.2.3.5 Jess Expert System ..
5.2.4 Games and Simulations ...
5.2.4.1 Tic-Tac-Toe ...
5.2.4.2 Chess ..2
5.2.4.3 Ideal Gas Simulation ...
5.2.5 Resource Management Systems ..
5.2.5.1 Views and Users ..
5.2.5.2 Room Scheduling System ...
5.2.5.3 Process and Resource Simulation ..
5.2.5.4 Airline Plane Routing Service ...
5.2.6 Miscellaneous Programs ...
5.2.6.1 VLSI Layout Programs ..
5.2.6.2 Java Animator ...
5.2.6.3 SPECjvm98 Compress ..
5.2.7 Query Summary ...
5.3 Query Classification ..0
5.4 Query Analysis and Classification Conclusions ...
5.5 Summary ... 103

6 Future Work and Open Problems ..
6.1 Automatic Change Sets ..
6.1.1 Automatic Change Sets for Method Invocations ...
6.1.2 Reference Chains ..
6.2 Safe Reevaluation and Distributed Debugging ..
6.2.1 Safe Reevaluation ...
6.2.2 Distributed Query-Based Debugging ...

7 Conclusions ... 113

8 Glossary ... 115

9 References ... 117

Appendix A Generalized Graph Matching ...

Appendix B Detailed Data .. 133
xi

xii

List of Figures
Figure 1. Error injavac AST ... 2
Figure 2. Error in GUI program .. 5
Figure 3. Error injavac AST ... 6
Figure 4. Inconsistent list state .. 18
Figure 5. Self morphs .. 20
Figure 6. Query-based debugger GUI ... 23
Figure 7. Overview of the query-based debugger ... 24
Figure 9. Data structures of the intermediate form of a query .. 24
Figure 8. Query evaluation pseudo-code... 25
Figure 10. Overview of query execution... 27
Figure 11. Left-deep join... 29
Figure 12. Hash join .. 31
Figure 13. Incremental delivery pipeline... 33
Figure 14. Query execution times ... 36
Figure 15. Completion time depending on join ordering (small queries) 38
Figure 16. Error injavac AST ... 43
Figure 17. Error in molecule simulation.. 45
Figure 18. Data-flow diagram of dynamic query-based debugger.. 46
Figure 19. Java program instrumentation.. 48
Figure 20. Control flow of query execution .. 52
Figure 21. Incremental query evaluation... 54
Figure 22. Selection evaluation using custom code .. 54
Figure 23. Modifying a VM to implement LTA. .. 57
Figure 24. Performing LTA with a custom class loader. .. 58
Figure 25. Implementing LTA by intercepting system calls... 59
Figure 26. Implementing LTA using dynamic linking.. 59
Figure 27. Program slowdown (queries 15–20 not shown)... 64
Figure 28. Breakdown of query overhead as a percentage of total overhead.............................. 64
Figure 29. Field assignment frequency in SPECjvm98... 71
Figure 30. Predicted slowdown ... 71
Figure 31. On-the-fly debugging instrumentation... 76
Figure 32. Inconsistent list state .. 109
Figure 33. Inconsistent intermediate list state ... 110
Figure 34. Subgraph corresponding to clauseCj in graphG .. 130

...... 35
.... 38
....... 40
..... 40
...... 61
..... 62
...... 66
..... 68
...... 69
...... 72
..... 73
...... 74
...... 78
...... 79
.....
...
... 133
.... 135
.... 137
..... 138
.... 139
.... 140
List of Tables
Table 1: Sample queries with their input and output sizes ..
Table 2: Completion time depending on join ordering (large queries)................................
Table 3: Slowdown of nested queries vs. hash queries...
Table 4: Response time (time to first result)...
Table 5. Benchmark queries ..
Table 6. Application sizes and execution times..
Table 7. Overhead of non-incremental evaluation...
Table 8. Benefit of custom selection code (selection queries only)
Table 9. Unnecessary assignment test optimization ..
Table 10. Frequencies and individual evaluation times...
Table 11. Maximum field assignment frequencies ...
Table 12. Benchmark queries with non-empty results...
Table 13. On-the-fly debugging overhead...
Table 14. On-the-fly query overhead...
Table 15: Query examples .. 96
Table 16: Query patterns... 102
Table 17. Field assignment frequency in SPECjvm98 applications
Table 18. Breakdown of query overhead...
Table 19. Execution times, overhead times, and invocation frequency...............................
Table 20. Results for evaluations with no fast selections and no change tests...................
Table 21. Non-incremental evaluation results ...
Table 22. Predicted slowdown...
xiii

xiv

,

nd

other
ddball
ses as
ions in
bjects
erit their
ge of

uted
l these
nology

g.

ming
ages,
 their

ons of
by the
ammers
nts of

ftware
of this
bject-
tion. It
ach to

ams.
served

at none
1 Introduction
“There are things on heaven and earth, Horatio
Man was not meant to know.”

Hamlet

“Man will never reach his full capacity while
chained to the earth. We must take wing a
conquer the heavens.”

Icarus

When object-oriented programming was introduced in 1966 [48], it was viewed as yet an
programming paradigm destined for the cobweb-filled corners of the academy and o
investment banking companies. Even the wide adoption of some of its principles—clas
modules, inheritance as reuse—was marred with compromises and hybrid implementat
languages like C++. Yet, the underlying elegant structure of object-oriented software—o
encapsulate state and behavior, objects exchange and react to messages, objects inh
parents’ features—is more and more recognized as a useful model for a wide ran
applications. Commercial software written in C++, Eiffel, Smalltalk and Java; distrib
systems using CORBA, DCOM models; web applets, servlets, and Internet agents—al
programs adopt object-oriented or object-based paradigms. The success of object tech
has finally driven it into the mainstream of both computer science and popular computin

Yet at this moment, when the paradigm of object-orientation has swept over the program
world, the programmers find themselves in a curious situation. The programming langu
environments, and tools have improved to accommodate new OO languages and
implementations. However, program complexity has increased at a much faster rate. Milli
lines of code written and maintained each year are almost impossible to comprehend
humans in charge of them. Users accept buggy software releases as a norm, and progr
aware of the situation can only blame the herculean task of enforcing all requireme
projects on the underlying complex systems.

While the object-oriented paradigm and its tools have tremendously improved the so
development and maintenance process, the work is not yet finished. At the beginning
research project, we felt that there were opportunities to contribute to the field of o
oriented program debugging, and we believe that this dissertation contains such contribu
is not the final answer to the daunting problem of debugging, but rather a new appro
debugging and a prototypical tool that implements it.

This thesis examines the problem of verifying object relationships in running progr
Programmers writing a piece of code are aware of various constraints that should be pre
at runtime. During the process of debugging, then, how can the programmers be sure th
of these conditions are violated?
1

bject-
ould be
ve that
nswer

t should

g
ram.

 two
r

me

rect
 of an
d the
ur?

g, and
allows
ries. A
m runs,
ompares
 used to

d the
d for
rams.
1.1 Problem Statement and Motivation

The goal of this thesis is to allow quick and easy checking of object constraints in o
oriented programs. Programmers debugging or trying to understand such programs sh
able to check the correctness of a constraint with a simple question. The method to achie
has to be powerful and simple. The method’s implementation should be fast enough to a
a question in less than a second, or, if the query is checked while the program executes, i
not unacceptably slow down the program.

For example, consider thejavac Java compiler, a part of Sun’s JDK distribution. Durin
compilation, this compiler builds an abstract syntax tree (AST) of the compiled prog
Assume that this AST is corrupted and aFieldExpression object no longer refers to the
FieldDefinition object that it should reference. Due to an error, the program may create
FieldDefinition objects such that theFieldExpression object refers to one of them, while othe
program objects reference the otherFieldDefinition object (Figure 1). In other words,javac should
maintain a constraint that aFieldExpression object that shares the type and the identifier na
with aFieldDefinition object must reference the latter through thefield field. What happens if this
constraint is violated? The compiler traversing the incorrect AST will perform incor
transformations leading to buggy output code. But even after discovering the existence
error, the programmer still has to determine which part of the program originally cause
problem. How can debuggers help programmers to find such errors as soon as they occ

This dissertation proposes a technique to solve the problem: query-based debuggin
presents optimized implementations of this technique. Static query-based debugging
programmers to ask complex questions about interobject relationships using simple que
dynamic query-based debugger continually updates the results of queries as the progra
and can stop the program as soon as the query result changes. In addition, this thesis c
these approaches with existing debugging techniques and shows how queries can be
debug object-oriented programs and understand runtime object relationships.

1.2 Contributions

The overall contribution of this dissertation is the development of a methodology an
implementation of practical tools for asking questions about object relationships an
checking interobject constraints that exist during the execution of object-oriented prog
The research on query-based debugging contains the following contributions:

Figure 1. Error in javac AST

refers to
FieldDefinition 2

FieldDefinition 1

should refer toFieldExpression 1

field
2

, a
bjects
large

nd
tes its
imple
s to be

n a
uery
 tool
 few

ram is
top the
y-based
lowing

n these
s the

ch
n be

ger
f two
 in the
ed less
 time

ve less
s are

ental
greatly
ustom
roving
• A new approach to debugging. Instead of exploring the program single object at a time
query-based debugger allows the programmer to quickly extract a set of interesting o
from a potentially very large number of objects, or to check a certain property of a
number of objects with a single query.

• A simple yet flexible query model. The query model extends the simple-to-understa
semantics of a programming language expression. Conceptually, a query evalua
constraint expression for all members of the query’s domain variables. The model is s
to understand and to learn, and at the same time it allows a large range of querie
formulated concisely.

• A practical interactive query tool. Many queries are answered in one or two seconds o
midrange workstation, thanks to a combination of fast object searching primitives, q
optimization, and incremental delivery of results. Even for longer queries where the
takes a long time to produce all results, the first result is often available within a
seconds.

Since static query-based debugging answers users’ questions only when the prog
stopped, it cannot indicate the exact location in the program where an error happens. To s
program as soon as the error occurs, we have proposed and implemented dynamic quer
debugging. The research on the dynamic query-based debugging contains the fol
contributions:

• An extension of static query-based debugging to include dynamic queries. Not only does
the extended debugger check object relationships, but it also determines exactly whe
relationships fail, and it does this while the program is running. This technique close
cause-effect gap between the error’s occurrence and its discovery.

• Use of dynamic queries for monitoring. The dynamic debugger helps users to wat
changes in object configurations through the program’s lifetime. This functionality ca
used to better understand program behavior.

• A practical dynamic query tool. The implementation of the dynamic query-based debug
has good performance. Selection queries are efficient with less than a factor o
slowdown for most queries measured. We measured field assignment frequencies
SPECjvm98 suite, and showed that 95% of all fields in these applications are assign
than 100,000 times per second. Using these numbers and individual evaluation
estimates, our debugger performance model predicts that selection queries will ha
than 43% overhead for 95% of all fields in the SPECjvm98 applications. Join querie
practical when domain sizes are small and queried field changes are infrequent.

Good performance is achieved through a combination of two optimizations: Increm
query evaluation decreases query evaluation overhead by a median factor of 160,
expanding the class of dynamic queries that are practical for everyday debugging. C
code generation for selection queries produces a median speedup of 15, further imp
efficiency for commonly occurring selection queries.
3

mplex
tes that
 expect
ram
g the
ware

tion 2.
tion 3.

method
-based
 model
query

icating
In summary, we believe that query-based debugging is a powerful tool to debug large, co
object-oriented programs. Our implementation of the query-based debuggers demonstra
queries about object relationships can be expressed simply and evaluated efficiently. We
that the results of this work will provide a foundation for further understanding of prog
execution and a commercial implementation of advanced debugging tools, simplifyin
difficult task of debugging as well as facilitating the development of more robust soft
systems.

1.3 Overview

This dissertation first presents background and related work in the debugging field in sec
Then it discusses static query-based debugging, its model and implementation in sec
Section 4 presents the dynamic query-based debugging method that extends the
proposed in the previous section. The same section gives examples of dynamic query
debugging, its implementation for Java systems, experimental results, and a query cost
that can predict program slowdown for various queries. Section 5 classifies different
types and their typical use for different programs.

Section 6 outlines open problems and future work. Section 7 presents conclusions ind
that query-based debugging is a novel useful debugging tool.
4

,

inning
thora of
rough
ogram
o the
 calls,
iginal
ntation
e been
mixed
 case

 objects
s that
 which
of this

gram
g the

 javac
 same
ces
2 Debugging—Background and Related Work
“Things are not always as they seem.”

Mandrake

“No matter what the product or service might be
you can find it somewhere else cheaper!”

E. Scrooge

Debugging of computer programs appeared soon after programming itself. From the beg
of debugging [73] to the present day, researchers and developers have proposed a ple
tools to find errors in programs. While static program errors can be found automatically th
syntactic analysis and semantic checking of language requirements, finding runtime pr
errors is a much more complicated task. Although runtime errors are directly linked t
program text, they also deal with the different universe of executing instructions, method
memory allocations, interobject references, and other relations only implied in the or
source code. This duality of the static program text and the dynamic program represe
makes runtime debugging a daunting task. A number of runtime debugging methods hav
proposed. They can be classified into control flow debugging, data observation, and
methods. To better describe the capabilities of different methods, we use the following
studies.

For the first example, consider a graphical user interface program. The program creates
corresponding to the graphical widgets that reference their parent window, and window
must in turn reference enclosed widgets. Assume that the program contains an error
makes some windows miss references to their children widgets (Figure 2). As a result

error, a program incorrectly redraws widgets contained in a window. Assuming that a pro
is stopped at a breakpoint, how can a programmer find windows and widgets violatin
relationship?

For the second example, consider another error that could occur in an AST built by the
Java compiler. Assume that this AST is corrupted by an operation that assigns the
expression node to the fieldright of two different parent nodes (Figure 3) that may be instan

Figure 2. Error in GUI program

Widget 1

parent

Window 2

widget
collection
5

 the

tions.
 which

owing
elated
these
related

. This
l flow
ethod
rs to
ools in

point or
ctions
tion for
riginal
at are

epping
193]

bject-
46]. As
ant to
ous.
of any subclass ofBinaryExpression. The error may not become apparent for some time, and

compiler may traverse the corrupted AST performing type checks and inlining transforma
Even after discovering the existence of the error, the programmer still has to determine
part of the program originally caused the problem.

The two examples above illustrate errors that can occur in object relationships. The foll
subsections discuss control flow debugging, data-flow debugging, and debugging r
techniques in program visualization in relation to these examples. We show that
techniques do not adequately address the problem of finding errors that involve several
objects.

2.1 Control Flow Debugging

Errors in programs can be caused by an incorrect control flow or an incorrect data flow
section discusses the first aspect of the program runtime—the control flow. The contro
follows the program text, which may hide errors such as infinite loops, unintended m
invocations, or faulty object interactions. Control flow debugging tools help programme
observe and to manipulate the control flow of the program. This section describes such t
detail.

2.1.1 Breakpoints and Single Stepping

In the simplest case, programmers want to stop the program when it reaches a certain
to single step through some of the instructions of a running program. The goal of such a
is to determine what code the program executes before crashing and to provide a founda
the data observation tools (section 2.2). Breakpoints and single stepping are the o
debugging methods that predate even the first paper on debugging by Gill [73] and th
available in most classical (Mesa [165], Cedar [166]) and modern debuggers. Single st
back in time is confined to a few innovative tools like ZStep 95 [176]. Wilson and Moher [
propose even more radical concept of ademonic memory that would allow programmers to go
back to previous process states. Implementing breakpoints for polymorphic calls in o
oriented programming languages is also a less common, though very useful technique [
Gill notes, single stepping is practical only in very limited cases when programmers w
look at a micro-segment of a program, because the slowdown during execution is enorm

Figure 3. Error in javac AST

Expression 2

BinaryExpression 1

Expression 1right

BinaryExpression 2

right
6

kpoint

ct link,
g data
prove

 stop
t full

resting
e error
dition
points

points
re not

t—the

itional

wever,
writing
has to

rt and

[133].
4] are
ram or
ecific

ons are
exit. In
 object

erences
In the case of the GUI program error, a programmer would stop the program at a brea
before trying to find the corrupt window and widget objects. To find thejavac error using
breakpoints, the programmer would have to know which part of code assigns the incorre
and only then place a breakpoint close to the error spot, and single step through it usin
observation tools. Such debugging is very tedious. To add power to breakpoints and to im
the efficiency of debugging, researchers have proposed conditional breakpoints.

2.1.2 Conditional Breakpoints

Conditional breakpoints [36][109] check a condition at a particular program location and
the program if this condition is true. The goal of this technique is to let the program run a
speed between the breakpoints, to slow down at breakpoints, and to stop only at inte
breakpoints. The programmer saves a lot of time, because the debugger checks th
condition at each breakpoint automatically. Programmers have to interfere only if the con
is true. Research on conditional breakpoints has led to efficient implementations of break
and conditional breakpoints on modern architectures [109]. However, conditional break
suffer from a drawback—the breakpoint condition cannot easily reference objects which a
reachable from the scope containing the breakpoint. To discover thejavac error, the condition
has to find an object not reachable directly from the scope containing the breakpoin
BinaryExpression containing a duplicate reference to the childExpression object. To
accomplish this task, the programmer could write custom testing code for use by cond
breakpoints. For example, thejavac compiler could keep a list of allBinaryExpression objects
and include methods that iterate over the list and check the correctness of the AST. Ho
writing such code is tedious, and the testing code may be used only once, so the effort of
it is not easily recaptured. Finally, even with the test code at hand, the programmer still
find all assignments to the fieldright and place a breakpoint there; injavac, there are dozens of
such statements. In summary, the tool (conditional breakpoints) provides minimal suppo
the programmer ends up doing all the work “by hand”.

2.1.3 Language Constructs

Some programming languages provide debugging support by allowing assertions [132]
Assertions, such as pre-/postconditions and class invariants as provided in Eiffel [13
similar to conditional breakpoints because they check a given constraint and stop a prog
throw an exception if this condition is violated. However, assertions are checked only at sp
program execution states. Preconditions are checked at the method entry, postconditi
checked at the method exit, and invariants are checked both at the entry and at the
addition to accessing the object state, postconditions can reference the “old” state of the
at the beginning of the method invocation.

Like conditional breakpoints, the assertions cannot access objects unreachable by ref
from the checked class.
7

k the
nalysis

ructure
e the

ming
object-

rt any
utines
h this

er’s
g code.
virtual
can be
 effort
ed. In
plex.

 more
. The
te
nds of
nd, the

n

 offer
 group
rtant
ult to
hers
es of
insight
m that

similar
milarity
Some debugging tools such as MrSpidey [62] use static program information to chec
assertions before the program is run. MrSpidey provides conservative static assertion a
indicating potential errors.

Constraint programming languages [90] make assertions first-class objects and st
programs around inter-object constraints. These programming languages chang
programmer’s viewpoint from objects to constraints. Though constraint program
languages are powerful tools, they do not help to debug programs written in mainstream
oriented languages.

2.1.4 Breakpoints and Testing Code

To generalize the idea of conditional breakpoints, tools could allow programmers to inse
code at a breakpoint. The implementation of this idea was pioneered by the EDSAC ro
[73] and included in other programming environments (Mesa [165], Cedar [166]). Thoug
approach offers the ultimate versatility, it also shifts all the work onto the programm
shoulders. The programmer has to gather the data to be printed or displayed by the testin
Writing test code may consume a considerable amount of time. For example, the Self
machine [89] contains over 10,000 lines of testing-related C++ code. Such testing code
used only to answer very particular questions while tracking a bug. Consequently the
spent writing this code is considerable compared to the number of times it can be us
addition, testing code may be inefficient, especially if the conditions it is testing are com
For example, a relatively straightforward assertion, such as “no widget is contained in
than one window,” may require the creation of reference counts to be verified efficiently
javac compiler could keep a list of allBinaryExpression objects and include methods that itera
over the list and check the correctness of the AST. With large programs containing thousa
objects, naive testing code may take minutes to execute. Even with the test code at ha
programmer still has to find all assignments to the fieldright and place a breakpoint there; i
javac, there are dozens of such statements.

2.1.5 Method Call Animation

While breakpoints and testing code provide maximum versatility, there are tools that
limited control flow debugging with increased ease of use and higher efficiency. One such
of tools deals with the method or function call animation. This group of tools is very impo
for program debugging because the control flow of the object-oriented programs is diffic
follow due to polymorphic calls. While some tools only display the function call stack, ot
provide additional functionality. For example, Ovation [50] displays clusters and matric
interacting classes, histograms of class instances and their method invocation activity. J
[52] extension to Ovation displays the program execution as a modified Jacobson diagra
shows time on vertical axis and message invocations on horizontal axis. Patterns of
message sequences are compressed into more user-friendly form using several si
8

plorer
 and
s object
ing
races
ogether
cepts

ualize
cation
out a

ed call
ot have
urals.

ed

uage is

s in
 the
tional

cution
ectly
 an

rol flow
ation.
urce of

 data
criteria. The system also allows filtering and searching through the graph. Program Ex
[117][118][119][120] shows method invocations between individual object instances
between objects grouped by classes. It also provides an interaction chart that juxtapose
lifetime with object interactions. HotWire [116] displays the basic call stack while allow
custom object visualizations. PV [111] extracts events of different levels from program t
and animates them. As a result, programmers can observe object allocation patterns t
with the communication library behavior and the operating system activity. Xab [22] inter
and shows PVM calls in parallel programs.

Jerding, Stasko and others [101][102][155] proposed a number of techniques to vis
messages in object-oriented programs. The first one displays object creation and invo
messages [101]. To use visualization for large real-world systems, the information ab
system can be summarized in different ways. Authors propose call graphs, summariz
traces and other representations that carry more information than a call graph, but do n
the information overload of a call trace. Call traces can be summarized in execution m
Higher level information is obtained by extracting message patterns from these traces.

Consens et al. [44][45] use Hy+ visualization system to find errors by querying distribut
program event sequences. The GraphLog programming language in the Hy+ system allows to
visually specify abstract event groups and find such groups in the event traces. The lang
powerful enough to find patterns involving transitive closure.

Kishon et al. [112] propose a formal framework to implement execution monitor
programming environments. Authors use functionals to add monitoring behavior to
programs, and integrate the monitoring semantics by merging it with program’s denota
semantics. A system using the paper’s theoretical results was implemented in Haskell.

Method call animation and its extensions help to understand object-oriented program exe
by displaying the non-trivial control flow of these programs. These methods do not dir
solve the GUI andjavac errors, but would indicate the control flow anomalies leading to
error.

2.2 Data Observation

The previous section discussed approaches of detecting and changing a program’s cont
to discover errors. The second important method of finding errors is data observ
Corrupted memory locations, incorrect values, and faulty object references are a large so
errors. While control flow debugging tries to answer the questionwhen something went wrong,
data observation tools try to findwhat made the control flow take a wrong path andwhat
incorrect data contributed to the incorrect results. This section describes various
observation tools that are widely used in debugging.
9

s and
mory

 contain
ook!
 all
The last
s are
n also

tions
n of
sed
t also
p 95

and

rogram
isplay

 full-
e user
g user
s, for
an be
t
ctions.
e the
es not
layed.
2.2.1 Memory Inspection

The simplest tool available for data observation allows users to inspect memory location
to see their contents in an intelligible way. I.e., the tools make it possible to display me
contents as values of variables or even as structured objects [46]. While most debuggers
inspector tools, some of them are more powerful than others (DDD[196], L
[14][143][188]). For example, the ET++ [25][69][183] runtime browser displays a list of
classes, all objects of a selected class and all objects that reference the current object.
capability is particularly interesting because the system has to track which object
referencing the current object, which is a costly operation. The ET++ object graph ca
show the container objects that store other object instances.

ET++ display capabilities build on the foundation established by Smalltalk implementa
that had similar features [76][77]. To allow intelligent display, manipulation, and inspectio
objects, Self [41][129][151] and Smalltalk [75] environments adopt the object-focu
interaction model. Such environments not only display structured object instances, bu
allow users to interactively change them. Similar spatial immediacy is provided by ZSte
[176] debugging environment. An implementation of ademonic memory [193] would allow
users to access and observe past states of a process.

Memory inspection tools can help to find the GUI andjavac errors. However, programmers
have to do a lot of work to manually look at all GUI window objects, widget objects,
references between them. Similarly, users have to traverse all thejavac AST nodes to check
whether they are correct. Furthermore, such inspection has to be done every time the p
modifies the AST. Consequently, such investigations are very tedious. Data structure d
tools described in the next subsection improve the process of data browsing.

2.2.2 Data Structure Display Tools

A straightforward extension of a memory inspection technique is a tool that allows a
fledged data structure display. Usually the tool displays data structures by using th
specified code. For example, Duel [74] and xDuel [195] display data structures by usin
script code. In addition, Duel provides operators for filtering irrelevant collection member
iteration over collections, and for traversal of data structures. Duel expressions c
intermixed with C expressions accepted by the underlyinggdb debugger. Although Duel is no
implemented for an object-oriented language, it could be extended to handle object colle
Although these systems simplify data structure display, they still require users to writ
traversal and output code. This code can be inefficient for large structures. Duel do
address the problem of finding the execution points at which the structure should be disp
10

uld not
he task
 view

ferent

nts on
obably

and
tance-

 simple
w and

ugging
owever,

hen a
data

g writes
able is
ariable
t value

ndreds
ents
dition,
 only if
m the
2.2.3 Data Filtering and Summary Tools

In large object-oriented programs, the number of objects is so large that programmers wo
be able to browse through all instances in a reasonable time. Debugging tools help with t
by filtering and summarizing the data. Ovation [50] includes a compact instance histogram
that shows all instances for all classes and an allocation matrix view that shows dif
instances created by different classes.

Hotwire [116] shows object instances, class instance counts, and method invocation cou
specific instances. If the method invocation count is zero, the object is not used and pr
created erroneously. Similar views are provided in the Java LTK debugger [113].

Look! [14][143] provides instance filtering tools that allow to remove individual objects
classes of objects from a view. The filters are coupled with method-call animation and ins
creation animation tools.

Instance filtering and summary tools do not help to find errors like the GUI andjavac errors,
because these errors cannot be detected from the summary information nor by creating a
filter. However, these tools are first steps in the direction of debuggers that mix control flo
data-flow debugging.

2.3 Mixed Constructs

Though some of the tools discussed above contain both control flow and data-flow deb
constructs, most of the time these aspects are separated or interact only occasionally. H
a number of tools integrate both types of debugging to provide additional capabilities.

2.3.1 Data Breakpoints

Data breakpoints combine breakpoints with data monitoring. A breakpoint is triggered w
variable connected to the breakpoint is assigned [106][179][180]. Unconditional
breakpoints can be used to detect unexpected writes to variables. However, just detectin
may give user too much unnecessary feedback. Errors may occur only when the vari
assigned a certain value. Conditional data breakpoints stop the program only when the v
is assigned a given value. Both variations of data breakpoints allow users to find incorrec
assignments to variables using a single test.

However, even conditional data breakpoints do not help to debug thejavac error described in the
beginning of this chapter because they are specific to one instance of an object. With hu
or even thousands ofBinaryExpression instances, and in the presence of asynchronous ev
and garbage collection, the effectiveness of data breakpoints is greatly diminished. In ad
it is hard to express this type of error as a simple boolean expression. The error occurs
an expression is shared by another parent node—a relationship difficult to observe fro
other parent or from the child itself. In other words, by looking just at the fieldright of some
11

alue

ement.

 slice,
vative
ce may
icing
a slice
es, the

slice of
ver, the
s that
e

ascal
abstract
equent

KA
of

ng tools
hey aim
vivid

ve been
ng the
 field.

traint
ccinct
ugging

ever,
 more
BinaryExpression object we cannot determine whether this object as well as its new field v
are erroneous.

2.3.2 Program Slicing

Often programmers need to decide what operations affect the current program stat
Program slicing [184][185][186] finds such a subset of program statements—aslice—that
affects the value of a certain variable or the current statement of the program. To find the
static slicing uses information inferred from the program text. Static analysis is conser
and uses all possible control flows to find statements affecting the current one. Such a sli
be large, but it is correct for all possible executions of a program. Dynamic sl
[9][104][169] uses program execution history to determine the slice. Such analysis finds
accurate only for the current program execution, but the slice may be smaller. In both cas
analysis combines control flow and data-flow debugging.

Slicing is helpful to find the cause of a detected error. Programmers can investigate the
a program affecting the invalid statement and reason about the causes of the error. Howe
slice may still contain a large part of the program and make it difficult to identify statement
were original causes of an error. In the case of thejavac bug, if the error is discovered late in th
program execution, the statement containing the original error may be hard to identify.

Bourdoncle [27] uses a technique similar to slicing to find correctness conditions for P
programs. His abstract debugging system uses programmer provided assertions and
interpretation of the program to determine how assignments of certain values affect subs
program statements.

2.4 Program Visualization Systems

Software visualization systems such as BALSA [31], Zeus [32], TANGO/XTANGO/POL
[159], Pavane [47][147][148], and others [84][137][144][146] offer high-level views
algorithms and associated data structures. They cannot be regarded as pure debuggi
because software visualization systems have different uses than everyday debugging. T
to explain or illustrate the algorithm [61], so their view creation process emphasizes
representation. Consequently the view creation requires substantial user effort. There ha
several attempts to use the visualization systems for debugging, some of them usi
conventional visualization systems [18], some of them adapting the systems to the new
For example, Hotwire [116] provides program visualization capabilities through a cons
language. The system separates visualization script from the program allowing su
visualizations that do not change the program source and can be used in quick deb
sessions.

Hart et al. [82][83] use Pavane for query-based visualization of distributed programs. How
their system displays only selected attributes of different processes and does not allow
12

ation
ibuted

sers of
 The
 which

levels:
gram
tails of
jects
nted
rs to

ically
arly

iented
atterns
t

nd, the
ations

 and
ulti-

 adopt
copic
ups of
complicated queries. The work done by this group focuses on gathering consistent inform
from distributed sources in an efficient manner. Similar issues arise in implementing distr
query-based debugging as discussed in section 6.2.2.

Takahashi et al. [167] visualize, animate, and directly modify abstract data structures. U
their system specify a mapping rule or allow the system to infer it from examples.
interesting feature of their system is the reverse mapping of pictures into data structures
gives users the power of direct manipulation.

Noble [140][141] observes that abstract data structures can be viewed at three
abstraction level, implementation level, and contents implementation level. Pro
visualization systems usually operate at the abstraction level and do not display any de
the ADT’s implementation. On the other hand, debuggers display the low level ob
(contents) composing the ADT. Noble’s Tarraingim program visualization system impleme
in Self presents the middle level implementation view. Such view helps programme
understand and debug ADTs. However, the implementation view is difficult to automat
identify and maintain. It requires ADTs to be implemented in a single class with cle
identified mutator and accessor methods. Though this assumption follows object-or
design guidelines, programmers may want to observe more general object interaction p
not supported by the system. For example, thejavac AST construction does not follow the stric
mutator/accessor requirements of the Tarraingim system.

Though most visualization systems have constructs powerful enough to discover thejavac bug,
these constructs are as difficult to use as writing custom test code. On the other ha
systems that facilitate rapid visualization development do so for a limited class of visualiz
that do not help in our case.

2.5 Summary

More than fifty years of debugging research has produced a wide variety of control flow
data-flow debugging tools. However, these tools are ill-suited to find the errors involving m
object relationship violations. Even the best debugging techniques force programmers to
either a very low level view of single objects and their properties, or an extremely macros
view of class histograms and statistical data. The tools lack capabilities to find small gro
objects satisfying specific constraints.
13

14

t

hnique:
ry tool
tatic

rmulated
ormal
ginning
ining

 query
in
s query
 save
speed
ute in

sed

e

on, and
3 Static Query-Based Debugging
“In times of crisis, it is of utmost importance no
to lose one’s head.”

M. Antoinette

“Attention to detail is the watchword for gleaning
information from an unsuspecting witness.”

Insp.Clouseau

3.1 Introduction

To overcome the problems described in chapter 2, we propose a new debugging tec
query-based debugging [123]. This new approach offers programmers an effective que
that allows complex relationships to be formulated easily and evaluated efficiently. S
queries can be asked whenever a program is stopped at a breakpoint. Queries can be fo
during debugging sessions, or stored in a debugging library together with the program’s n
code. A query-based debugger can easily find errors in the examples presented in the be
of chapter 2. For example, verifying that all widgets are referenced back by their conta
windows is as simple as entering the query

widget wid; window win.
(wid window = win) &&
(win widget_collection includes: wid) not

(The current implementation of the static query-based debugger is based on Self, so
expressions use Self syntax. On the other hand, thedynamic query-based debugger described
section 4 is implemented for debugging Java and uses Java expression syntax [16].) Thi
identifies all objects that violate the containment constraint. Not only does this query
debugging time, the query evaluator can apply sophisticated optimization algorithms to
the execution of the query and to deliver the results incrementally. Typical queries exec
seconds, even for programs involving thousands of objects.

To discover thejavac bug, we could combine conditional breakpoints with a static query-ba
debugger. For example, the query

BinaryExpression* e1, e2. e1.right == e2.right && e1 != e2

would find the objects involved in the abovejavac error. The breakpoints would then carry th
condition that the above query return a non-empty result.

The rest of this chapter discusses the debugger query model, the system implementati
experimental results.
15

during
ple to
st like
an use
based
se Java

s

find all
sed
ntain
d

ch tuple
n result.
aluated
 result
elect
3.2 Query Model

Our basic premise is that programmers need to verify relationships among objects
debugging. However, any tool for verifying relationships must be both expressive and sim
be widely applicable and to save debugging time. In our system, query expressions look ju
expressions in the underlying programming language, Self [177], so that programmers c
queries without learning a new syntax or language. Accordingly, we would expect query-
debuggers for different languages to choose a syntax close to that language. In fact, we u
expression syntax in the dynamic query-based debugger (section 4).

The query syntax is as follows:

<Query> ::==<DomainDeclaration> { ; <DomainDeclaration> } .
<ConditionalExpression>

<DomainDeclaration> ::==<ClassName> [*]
<DomainVariableName> { <DomainVariableName> }

The query has two parts: one or moreDomainDeclarations that declare variables of clas
ClassName, and aConditionalExpression. The first part is called thedomain part and the second
theconstraint part. Consider the widget and window query:

widget wid; window win.
(wid window = win) &&
(win widget_collection includes: wid) not

The first part of the query defines thesearch domain of the query using databaseactive domain
semantics ([1], section 4.2). The domain part of the above example should be read as “
widgetswid and all windowswin in a system such that...”. With Self being a prototype-ba
language,widget is the name of the widget prototype, and its domain are all objects that co
the same fields as this prototype;1 in a class-based language,widget would be a class name an
its domain would be all instances of the class.

The second part of the query specifies the constraint expression to be evaluated for ea
of the search domain. Constraints are arbitrary Self expressions that evaluate to a boolea
In particular, they may contain message sends. Semantically, the expression will be ev
for each tuple in the Cartesian product of the query’s individual domains, and the query
will include all tuples for which the expression evaluates to true (similarly to an SQL s
query).

The general form of a query is

X1 x11 ... x1 n1; ... ; Xm xm1 ... xm nm.
Constraint1 && ... && Constraintk

1 See section 3.3 for a more precise definition.
16

e

es not
wever,
s all

 only
der as
an be
 occur
onably

raints
ash

ility to
be side-
ethods
ult for
Eiffel

hen the
rovide

e
t state.

ference
s not

 and

y relates
where xij is a domain variable whose domain is Xi. The definition of domain variables can hav
single-type domains or domains including subtypes. For example, thewidget single-type
domain contains widgets but does not contain colorWidgets. In other words, a domain do
include objects of any subclass or subtype [35] (or, in classless Self [174], subobject). Ho
if a “*” symbol in a domain declaration follows the prototype name, the domain include
objects of subtypes, subclasses, or subobjects. In this case, thewidget domain would contain
both widgets and colorWidgets.

We express the constraint part as a conjunction of a number of individual constraints
because this conjunctive form allows a number of optimizations to the query evaluation or
described in section 3.3. Constraints not in conjunctive form are perfectly valid and c
specified, but our current system performs no optimizations on them. Conjunctive queries
frequently and are natural to use, so this restriction has not yet proved to be unreas
limiting.

We refer to queries with a single domain variable asselection queries; following common
database terminology, we call the rest of the queriesjoin queries because they involve a join
(Cartesian product) of two or more domain variables. Join queries with equality const
only (e.g.,p1.x = p2.x) arehash joins because they can be evaluated more efficiently using a h
table (see section 3.3.6).

3.2.1 Assumptions

Our query model is based on several assumptions. First, it is the programmer’s responsib
ensure that queries are side-effect free—just as expressions in C/C++ assertions must
effect free. It would be possible (at least in Java) to perform a conservative test whether m
invoked in the query are side-effect free. However, such tests become increasingly diffic
polymorphic method chains. Our system follows the model of assertions in C/C++ and
that require users to ensure that the methods are side-effect free.

Second, the programmer must ensure that the queried objects are in a consistent state w
query is evaluated. In other words, the expression evaluation should succeed and p
meaningful results. At some program execution points the query evaluation may be unsaf1. For
example, during an insertion of an element into the list, the list may have an inconsisten
In Figure 4, if the query is asked just after the program updates thenext reference of the
OldNode but before it sets thenext reference of theNewNode to point to theTailNode, the query
evaluation will be unsafe. If the debugger traverses a list, it may crash because the re
NewNode.next is null or it may produce an incorrect output by using a shorter list that doe
contain theTailNode. For static queries, we assume that the user is aware of this problem

1 The term “unsafe” here follows the programming language terminology and not the database terminology, where safet
to queries with infinite answers ([1], section 5.3).
17

ynamic

ueries
equality
ht-hand
o are
an be
 Self
d the

 in the
ality.

olean
ng to
t so far

nning
ure of
d this
lated
only asks queries when queried objects are consistent. The problem of consistency for d
queries is discussed in section 6.2.1.

Finally, to use efficient hash joins (see section 3.3.6), we assume that the “=” method in q
has equality semantics, i.e., that the “=” method has the same meaning and is as strict as
of the system-defined hash value of the left-hand operand and the hash value of the rig
operand. If the hash value equality is stricter than the “equals” method or if the tw
incomparable, the hash joins would give incorrect results. For example, all methods c
redefined in Self, so the “=” method can violate the constraint above. However, the
programming guidelines strongly suggest preservation of the equality semantics, an
current Self system contains no method that violates it1. On the other hand, bothshallow and
deep equalities [110] are supported in the hash joins depending on which equality is used
“=” method; the hash value equality in a hash join is verified by using the “=” method equ

3.2.2 Discussion

We chose the given query model primarily because of its simplicity: a query is a bo
expression prefixed by a search domain specification. Originally we anticipated havi
extend the model once its shortcomings would become clear during experimentation, bu
we have not encountered such situations.

One possible shortcoming of this query model lies in the nature of program invariants spa
a number of objects and classes. Programmer implied invariants usually have a mixt
universal and existential quantification—”For all widgets, there exists a parent window an
window refers to the widget in its widget collection.” Such complex constraints can be vio

1 For environments where this assumption is not valid, section 3.4.5 shows the effect of not using hash joins.

Figure 4. Inconsistent list state

Node

next

OldNode

next

NewNode

next

TailNode

next

Node

next

OldNode

next

TailNode

next

Original list

List insertion
18

idget
rence

 given

tten in
 can a
lation

query.

 given

d
be an

and
ss of
m to the
idering
ikely
 check
f an
int.

alk’s
void
pproach
cannot
n was
ation
in a variety of ways. First, the widget may not reference a window at all. Second, the w
may reference a window that does not reference this widget. Finally, the window may refe
a widget that does not reference this window. Can a single query find all violations of a
constraint? Unfortunately, that is not the case with the current query model.

Consider a simple constraint that requires an element to belong to a single collection:

Collection c; Element e. ∀e ∃c: c contains e

Here the constraint is expressed in the notation of mathematical logic and can be wri
English as: “For all elements there exists a collection that contains that element.” How
program violate this constraint? The mathematical logic expression of such constraint vio
is:

Collection c; Element e. ∃e ∀c: ! (c contains e)

Unfortunately, in this case, there is no simple way to express the violation condition as a
A query

Collection c; Element e. ! (c contains e)

would give as an answer all tuples such that a given collection does not contain the
element. However, that is not the intention behind the query.

One approach is to define a method in the classElement that iterates through all collections an
checks whether the element instance is contained in them. Then the query would
expression:

Element e. ! (e isContainedBySomeCollection)

Unfortunately, this solution involves writing testing code which is tedious, inefficient
inelegant. Currently we offer no solution to this problem. Considering that a large cla
queries can be expressed in the current model, some queries can be rewritten to confor
restrictions of the model. If users of a query-based debugger formulate queries by cons
some constraint violation instead of formulating the constraint, their queries would l
conform to the model. In some cases, it is possible to consider the constraint and then to
different ways in which it can be compromised. Consequently, finding the violation o
invariant may require asking a few queries to check all possible violations of the constra

An alternative way of specifying queries would use iterators such as Smallt
allInstancesDo: method; by predefining more of these iterators, one could potentially a
introducing any query language at all and just use the base language. We rejected this a
for two main reasons. First, it is language-dependent—languages without closures
express such iterators succinctly. Second, we felt that a declarative domain specificatio
simpler and more flexible, putting the burden of choosing an efficient iteration and evalu
order on the query optimizer instead of the programmer.
19

odels
ndard
rately
ed these

 written

orphs
at can
ontain
itive.

orphs
uch as
Object-oriented databases typically contain more sophisticated query m
[2][19][139][154] including such standard models as OQL from the Object Database Sta
[37]. Our solution was specifically designed for query-based debugging, and we delibe
traded off expressive power in exchange for simplicity and ease of use because we deem
attributes to be of primary importance.

3.2.3 Examples

We now discuss several examples of queries that we used to understand large programs
by others.

3.2.3.1 The Self Graphical User Interface

We implemented our debugger prototype using the Self user interface based on m
[129][156]. Morphs are user interface objects (usually having a visual representation) th
perform specified actions and can be moved on the desktop (Figure 5). Morphs can c
other morphs and hierarchically build complex interface objects. Some morphs are prim
For example, row and column morphs arrange objects horizontally or vertically, frame m
surround other morphs, and button morphs trigger actions. More complicated morphs s
object outliners are composed of a number of simpler morphs.

Row
morph

Column
morph

Figure 5. Self morphs
20

ut the
estions.
n one
ed the

he last

orphs
ss that

 results
rs

tained
em did

, but
e still

totype
tructure

n reveal
.

k at a
piler
as to
During the development of the debugger we encountered numerous questions abo
accepted use of morphs. Using our debugger we could easily answer many of these qu
For example, initially we wondered whether one morph could be a part of more tha
composite morph. Intuitively, we felt that such a structure would be incorrect, so we ask
debugger to “find all morphs directly contained in at least two morphs”:

morph a b c.
(a morphs includes: b) && (c morphs includes: b) && (a != c)

An empty answer set showed no such morphs in the entire Self system. Note that t
conjunct in the constraint indicates that morph objectsa andc should not be identical. This
constraint is not enforced implicitly and has to be explicitly specified.

Another interesting question arose when we tried to construct “table” morphs. Are row m
usually embedded into column morphs or vice versa? We looked at the object outliner cla
already implements a similar structure, and asked the following two queries:

objectOutliner a; rowMorph b; columnMorph c.
(a morphs includes: b) && (b morphs includes: c)

objectOutliner a; columnMorph b; rowMorph c
(a morphs includes: b) && (b morphs includes: c)

The output of the first query was empty, whereas the output of the second query had 23
(objectOutliner-columnMorph-rowMorph tuples), leading us to conclude that object outline
contain column morphs that in turn contain row morphs. However, the query output con
only 23 of the 132 object outliners present in the system at that point; maybe some of th
not contain column morphs or row morphs at all. The query

objectOutliner a; columnMorph b.
(a morphs includes: b)

returned 130 results. That is, all but two object outliners contained column morphs
apparently most of these column morphs did not include row morphs. Two outliners wer
unaccounted for; perhaps they did not even contain column morphs. The query

objectOutliner a. (a morphs size = 0)

confirmed this guess and showed that the two remaining object outliners were special pro
objects. This example demonstrates how our debugger can help to understand both the s
of objects as well as the interactions among them. As we have shown, the debugger ca
anomalous objects, which might not always be erroneous as witnessed in the last query

3.2.3.2 Understanding the Cecil Compiler

Because our debugger helped us to understand Self GUI objects, we decided to loo
complex system with which we had no previous experience—a prototype Cecil [38] com
written in Self by Craig Chambers, Jeff Dean, and David Grove. Here the main goal w
21

 in the
ternal
d their

Cecil
 Cecil
s with

e can

oved to
ve that
mplex

 object-
 it is a

well as
s that
rtual

 handle
their

rs can
iously
s to the
understand the system and in particular to understand relationships among objects
system. During compilation of a Cecil program, the compiler creates a large number of in
objects representing Cecil language constructs: declaration contexts, Cecil objects an
bindings, methods, and so on.

First, we explored parts of the compiler by finding compiler objects corresponding to
constructs in the compiled Cecil program. We discovered a number of properties of the
types. For example, the simple Cecil program we compiled did not have named type
instantiations:

cecil_named_type a. (a instantiations size != 0)

Also, the query below showed that only three Cecil types had subtypes:

cecil_named_type a. (a subtypes size != 0)

Can Cecil programs have formals with the same name in different methods?

cecil_method a b; cecil_formal c d.
(a formals includes: c) && (b formals includes: d) &&
(c name = d name) && (c != d) && (a != b)

The query result was not empty, confirming the hypothesis that formals with the same nam
indeed occur in different methods.

We made a number of other queries about the compiler objects. Overall, the debugger pr
be a valuable tool in understanding the Cecil compiler. This experience leads us to belie
query-based debuggers will be useful for other programmers trying to understand co
object-oriented systems.

3.3 Implementation

We implemented the static query-based debugger in Self [177], a prototype-based, pure,
oriented programming language. We chose Self as our experimental platform because
demanding platform for debugging due to the large number of objects in the system, as
the numerous complex object relationships. In addition, Self provides several feature
simplify the implementation of the prototype system. In particular, Self has a fast Vi
Machine that allows runtime (on-the-fly) code generation and optimization [5][39].

We have also implemented the static query-based debugger in Java and extended it to
dynamic queries. For a discussion on different implementation techniques and
applicability to various languages, see section 4.3.7.

The query-based debugger’s front-end in Self is constructed from morphs (Figure 6). Use
ask questions by typing in a query string or by selecting a query from the history of prev
asked queries. The answer is displayed as a collection of tuples that provides acces
22

6, the

arts of
uation

ion 3.3,

parsed
domain
n finds
 to the
 which
corresponding objects via the direct-manipulation interface [41]. For example, in Figure
user has displayed one of therowMorph objects from the answer set.

The interface for the prototype implementation allows the experimenter to select what p
query processing to do and what optimizations to apply. It also displays the query eval
time.

In section 3.3.1, we present the general structure of the system. In the remainder of sect
we discuss in more detail the most important parts of the debugger.

3.3.1 General Structure of the System

Figure 7 shows a data-flow diagram of the debugger. A query string given by the user is
by a simple Self expression parser hand implemented in Self. The parser extracts the
variables from the query string and passes their types to the collection module which the
all objects of domain types (see section 3.3.2) and returns them in separate arrays
execution module. The parser also transforms the query string into an intermediate form,

QBD window

Figure 6. Query-based debugger GUI

Answer
collection

Object from
the answer
collection
23

f the
imizer
traints
lf source
icated
untime
ack to

il.
is a collection of constraints, each of which in turn corresponds to one constraint o
conjunctive form of the query. The parser then passes this intermediate form to the opt
which performs order and method optimizations using the knowledge about query cons
and domain sizes (see section 3.3.4). The code generator module then generates Se
code for the query-specific constraint-checking methods and integrates it with prefabr
constraint evaluation code. In the last phase, the execution module sets up the r
environment for the query evaluation, runs the query code, and finally sends the result b
the user. The query evaluation process is summarized in the Figure 8 pseudo-code.

The rest of this section discusses the most important parts of the debugger in more deta

User
input

Parser

Query string

Collection
moduleOptimizer

Intermediate form

Code
generator

Optimized form

Execution
module

Generated Self code

Object collections

Output

Figure 7. Overview of the query-based debugger

Variable types

Collection sizes

Figure 9. Data structures of the intermediate form of a query

Domain variable

name

domain

Domain collections

domain collections

constraints

Constraint

expression

domain

variables
24

Figure 8. Query evaluation pseudo-code

// Parsing into the intermediate form
Extract domains from the query string. For each domain create a domain collection.
Extract variables from the query string.
For each variable create a variable object. Store a name, a reference to the variable’s domain,
and a collection of references to constraints containing the variable.
Extract constraints from the query string.
For each constraint create a constraint object, store the constraint, the code for its evaluation,
and collection of references to its variables (Figure 9).

Create domain collections of the query domains by invoking the domain collector primitive.
Handle subtypes of the domain type if necessary (section 3.3.2).

// Intermediate form transformation

Go through the constraint list {
if (equality constraint) {

Use the left-hand side of the equality to construct a hash table insertion function.
Use the right-hand side of the equality to construct a hash table lookup function.
Assign a hash-join evaluation method to the constraint.
Set left-hand side and right-hand side domains of the hash-join constraint.

}
else { Set up the constraint as a nested query }

Set up the relationship between the constraints and variables in them.
}

// Optimization

Estimate selectivities of all constraints by evaluating constraints for a random sample of
domain objects. (Select a small sample size. Evaluate the sample only if all domains are
larger than the sample. For small queries set selectivity to high. For no-result highly selective
queries, set the selectivity to high. For other selective queries set selectivity to medium.
Otherwise, set selectivity to low.)

// Build left-deep tree of joins

Select the first join using maximum selectivity, minimum size heuristic. Assign it index 1. Move
it from the unprocessed join table to the processed join table.
While (unprocessed join constraint table non-empty) {

Find all joins that have at least one domain in common with joins in the processed join
table. Find a join with maximum selectivity, minimum size among selected joins. Move this join
to the processed join table. Assign it the incremented index.
} // Resulting indices give the join evaluation order.

// Generate code

For each of the join constraints generate its evaluation code. This code will iterate through the
input collection and the intermediate result collection to evaluate the current constraint and to
produce the tuple collection satisfying this constraint.

// Evaluate code

If (evaluation incremental) { Use pipelined and time-sliced evaluation (section 3.3.7). }
else { Evaluate joins in a straightforward inverted tree way (section 3.3.3). }
25

 new
. Since

onstant
 to find
ly. The
es (i.e.,

itive
d. Given

e. This

le lists
use of
lass”
 and
ould

s. The
s. First
g all
not be
er each
rack of

a class.
,
ted the
3.3.2 Enumerating All Objects in a Domain

To enumerate all objects in a domain, we extended the Self Virtual Machine with a
primitive that scans the entire heap and returns a vector containing all matching objects
the Self implementation already canonicalizes its internal type descriptors (maps [39]), it
ensures that all objects with the same object layout (i.e., the same slot names and, for c
slots, slot contents) have the same type descriptor. Therefore, the primitive merely needs
all references to a particular type descriptor, a task that can be accomplished fairly quick
cost of the primitive is dependent on the total size of the heap and the number of match
the size of the result). On our test machine (a 200 MHz UltraSPARC workstation) the prim
searches about 110 Mbytes per second and can return about 700,000 objects per secon
this speed, the primitive has never been a bottleneck in our system.

To find all objects of a type and all its subtypes, the system has to know the subtype tre
tree in Self is constructed as follows:

Iterate through all global objects.

Create two hash tables of all global objects containing object-parent pairs. Object table is
indexed by prototype objects, parent table is indexed by parents.

For each object o in the object table, get all its ancestors.

For each ancestor, look up the object-parent pair using the parent hash table.
Put the object o into the pair’s subtype collection.

This algorithm produces a table indexed by prototype objects. Each element of this tab
prototype objects of all subtypes of a type. This subtype list is, however, imprecise beca
Self’s support of multiple inheritance and convention-only placement and naming of “c
objects [175]. Multiple inheritance gives additional subtypes of a given type. Objects
“classes” invisible at the base level of global hierarchy will not be processed. Algorithm w
need to be extended to handle these cases.

Enumerating all objects of a domain can be achieved in different ways in different system
implementation of the dynamic query-based debugger in Java uses two approache
approach changes the Java Virtual Machine to provide an additional primitive returnin
instances of a certain class. This approach does not work if a Java Virtual Machine can
changed. Second approach adds instrumentation to Java class files to call the debugg
time an object of a monitored class is created. In this case, the debugger itself keeps t
existing domain objects (section 4.3.4).

Some programming languages and systems provide a direct way to list all instances of
For example, Smalltalk [75][77] providesallInstances: method. In other cases, like C++
tracking objects of a class would be a difficult endeavor unless the debugger instrumen
source code, or tracked only the framework classes [69][183].
26

ery for
e join
ation
gure 10
3.3.3 Overview of Query Execution

The debugger finds answers to a query by sequentially evaluating all constraints of the qu
the query’s domain variables. Constraint evaluation is similar to a relational databas
coupled with a selection. The initial inputs are individual domains, but during the evalu
these domains are joined; consequently later evaluations consume tuples of objects. Fi
shows the query execution of the query

objectOutliner o; columnMorph m; rowMorph r.
(o morphs includes: m) && (m morphs includes: r)

Collection of
objectOutliners

Variable o

Figure 10. Overview of query execution

Collection of
columnMorphs

Variable m

Collection of tuples (o, m, r)
conforming to constraints

(o morphs includes: m) &&
(m morphs includes: r)

Collection of rowMorphs
Variable r

Collection of tuples (o, m)
conforming to constraint
(o morphs includes: m)

(o morphs
includes: m)?

(m morphs
includes: r)?

(o1, m1, r1)

(o1, m1, r2)

(o2, m3)

(o1, m2)

C1

C2
27

. The
ut;

 joins,
ly the
 tuples

s take
rder of
nds to
 for an

rall
affects
(The
input
 the
hain
ns. For
 with
time-

g an
g in
uce

[113]
yclic
es and

ristic
put
for the
rming

. We find
This query consists of two constraints, each involving two of the three domain variables
first constraint,(o morphs includes: m) consumes object outliners and column morphs as inp
the second constraint consumes tuples with object outliners and column morphs.

Following the evaluation procedure outlined in Figure 10, the system performs a chain of
and ends up with a single output collection containing tuples with all objects. Since on
tuples satisfying earlier constraints are passed along the chain, the output contains only
satisfying all constraints. In our example, tuples(o1, m1, r1) and(o1, m1, r2) conform to both
constraints and are results of the query.

The system could form the chain of joins in an arbitrary way, but some execution order
longer to process than others. In fact, for some queries the difference is more than an o
magnitute—a bad join ordering may increase the evaluation time of a query from 2 seco
10 minutes (see section 3.4.3). Avoiding bad orders and finding good ones is necessary
acceptable tool performance. The next section investigates the problem of join ordering.

3.3.4 Join Ordering

The execution order of the individual joins of a query significantly influences ove
performance. To see why, consider the cost of a single join. The input size of a single join
its execution time, while its selectivity affects the input sizes of subsequent joins.
selectivity is the ratio of tuples that do not conform to the constraint to the number of
tuples in the Cartesian product1.) Both the selectivity and the input sizes of a join depend on
join ordering. In particular, evaluating joins with low selectivity at the beginning of a join c
can produce large intermediate results that slow down the evaluation of subsequent joi
example, the Cartesian product of two 10,000-element relations produces a relation
100,000,000 tuples. Such a relation would not only be costly to store but also very
consuming to use.

To optimize the query execution, we must minimize the intermediate results by findin
optimal join ordering. There are no general algorithms that find an optimal join orderin
polynomial time—in fact, this problem is NP-complete [93]. Several algorithms prod
optimal or near-optimal orders for restricted cases. For example, the KBZ algorithm
computes optimal join orders for left-deep ordering where the join graph is acyclic (for c
graphs the algorithm gives approximate results) assuming perfect knowledge of join siz
selectivities.

Numerous heuristics try to find near-optimal orderings [93][113][160][164]. One such heu
is theminimum-cost heuristic that performs the lowest-cost join first. It uses the size of the in
relations as the sole cost factor, with the join’s cost being the product of the inputs’ sizes
nested-loop join. The minimum-cost heuristic is based on the observation that perfo

1 The database community uses an inverse terminology where “high selectivity” means “many tuples pass the selection”
it more intuitive for “highly selective” to mean “only few tuples pass the selection”.
28

ensive

er by
nly
s the

rings
rther

uently
ity has
ging is

dozen
 is not a
nlikely
is very

ins are
es not
ould

peedups

ed by
e join.
ints
 0.50).
cheap joins in the beginning should shrink the intermediate result size, making the exp
(large) joins at the end less expensive to perform.

In addition to using the minimum-cost heuristic, we impose a restriction on the join ord
usingleft-deep ordering. Left-deep ordering [153][160] requires each join to have one and o
one intermediate result relation as an input (Figure 11). Left-deep ordering increase
probability of finding an efficient join order since it has a larger percentage of “good” orde
in its search space [95][160]. It also simplifies incremental result delivery as explained fu
below.

3.3.5 Maximum-Selectivity Heuristic

Another heuristic used to order joins is themaximum-selectivity heuristic. It performs joins with
the highest selectivity first because such joins eliminate the most tuples and conseq
produce smaller input sizes for subsequent queries. Although the usefulness of selectiv
been well-documented in the database literature [113], its use in the query-based debug
different. Queries asked during debugging typically have modest output sizes of a few
objects, despite search domains that may encompass many thousands of tuples. This
coincidence—programmers want to inspect the objects in the query result, and thus are u
to pose queries that have large outputs. Consequently, the selectivity of a typical query
high (e.g., 99.99% of all tuples do not pass the condition).

The query-based debugger knows the precise input sizes of joins because all doma
enumerated before determining the query evaluation order. However, the debugger do
know the selectivities of the joins. To accurately estimate selectivity, the query optimizer w
have to sample a large number of tuples [79], a process that can negate the potential s
gained from better query ordering.

To improve query optimization, our system usesimprecise selectivity information by randomly
choosing ten objects from each domain and evaluating the constraint for all tuples form
these objects. The number of tuples satisfying the constraint indicates the selectivity of th
While imprecise, this information still allows to distinguish highly-selective constra
(selectivities larger than 0.80) from the constraints that have low selectivities (less than

Join

Figure 11. Left-deep join

Original collection R2Original collection R1

Intermediate collection Original collection R4

Intermediate collection Original collection R3

Result collection
29

their

w more
hus the
und a
 sample
curate
ndard

(high-

wing

ystem
sible.

zes of
tivities
 the
 last

a
r the
We decrease the priority of the joins containing low selectivity constraints by multiplying
cost by a factor of 100.

How large a sample should the system use to estimate selectivity? Larger samples allo
precise estimates, but small samples reduce the cost of estimating the selectivity (and t
overhead of query optimization). We experimented with several sample sizes and fo
sample size of 10 to be a good compromise between accuracy and cost. On average, a
size of ten produces selectivity estimates with a standard deviation of 0.035, which is ac
enough for our high-low distinction. Increasing the sample size to 100 reduces the sta
deviation to 0.01 but is 100 times more costly for a two-object constraint.

The debugger uses a modified minimum-cost heuristic that takes into account two-level
low) selectivity estimates. For example, for the query

cecil_method a b; cecil_formal c d.
(a formals includes: c) && (b formals includes: d) &&
(c name = d name) && (c != d) && (a != b)

the minimum-cost heuristic alone would choose to evaluate the constraints in the follo
order: (c name = d name), (b formals includes: d), (a != b), (a formals includes: c), (c != d),
resulting in a query execution time of 37 seconds. By using selectivity estimates the s
recognizes that the join(a != b) has a low selectivity and should be evaluated as late as pos
Consequently it chooses a different evaluation order:(c name = d name),
(b formals includes: d), (a formals includes: c), (a != b), (c != d). This improved evaluation order
reduces the query execution time to 5.9 seconds.

The dynamic query implementation uses a different join ordering heuristic. Because si
domains change during program runtime, and we cannot efficiently determine the selec
of constraints for changing domain sizes, we simplify the heuristic for join ordering:
systems executes selections first, equality joins next, and inequality constraints
(section 4.3.5.1).

3.3.6 Hash Joins

Many query constraints have the formα = β, whereα andβ are expressions involving two
different domains. In such cases, the system can compute the corresponding join using hash-
join method instead of using a less efficient nested-loop method [53][135]. Conside
following query about Cecil structures:

cecil_named_object n; cecil_top_context t;
cecil_object_binding o.
(n defining_context = t) &&
(t varBindings includes: o) && (o value = n)
30

uate a

ll result

plying

the
e hash

to
e scan

cute in

en the

ce for

h join,
 in the
In this Cecil query, we can use a hash join to evaluate the(n defining_context = t) constraint.
Hash joins do not affect the join semantics; they are simply a more efficient way to eval
join.

To evaluate a constraint using a hash join, we first construct a hash table that maps a
values of expressionα to the domain variable(s) that produced these results. In Figure 12, which
uses the above example, the hash table maps contexts (the results of ap
n defining_context expression to objectsn1 andn3) to cecil_named_object objectsn1 andn3.
Then, we evaluate the expressionβ for each object of the domain on the right-hand side of
equality and probe the hash table with each result. If the probe is successful (i.e., if th
table contains one or more tuples that evaluated to the same value using expressionα), all of
these tuples are added to the result because they satisfy the conditionα = β. In Figure 12, the
cecil_top_context object t2 is mapped to the same slot as thececil_named_object n3, and
t2 = n3 defining_context. Consequently, the tuple(n3, t2) satisfies the constraint and belongs
the result. Using the hash join method, the join result can be constructed with a singl
through all tuples inβ’s domain.

On average, hash joins are more efficient than nested loop joins because they exe
O(|α| + |β|) time if the output is small, compared to O(|α| * |β|) time required for a nested loop
join regardless of the output size. (If the output is close to the size of Cartesian product th
cost of a hash join will also be O(|α| * |β|)). Our join ordering algorithm uses |α| + |β| to estimate
the cost of a hash join. For example, if there are 4cecil_top_context objects and 69
cecil_named_object objects, the estimated cost of the hash join(n defining_context = t) is 73.

The experiments in section 3.4.5 demonstrate that hash joins can improve performan
some queries.

In the debugger implementation of a join chain, each join may be a nested-loop join, a has
or a selection. Since the join type is decided dynamically and depends on its position

Figure 12. Hash join

t2

n1

n defining_context

t

Cecil top context collection

cecil_named_object collection

slot 1

hash table

n3

slot 2 slot 3 slot 4
31

nt, we
. But
mple,
time-
nning
ct them
hnique
e first

limited-
rcular
ement
 next
 when
uery

mall—
ipeline

 simple
 result,
the end

ple,
 the
eduler
ne and

ize it
t the
out
ion
ire first
eir time
 any
rtening
chain, the constraint objects in a join chain are assigned the join type through theirjoinType
field. This implementation decision uses a Strategy design pattern [67][68].

3.3.7 Incremental Delivery

Because a query-based debugger is a part of an interactive programming environme
would like to achieve interactive performance for the widest possible class of queries
sometimes it is impossible to compute the entire query result within a short time, for exa
the input relations may be very large or the individual query expressions may involve
consuming operations. Incremental delivery improves the response time of long-ru
queries by delivering the first result(s) as quickly as possible, so that the user can inspe
while the rest of the result is being computed. To achieve this goal, we developed a tec
that dynamically adjusts the CPU time allocated to individual constraints to produce th
result as quickly as possible.

In our system, each join executes as a Self thread and is connected to the next join by a
size intermediate result buffer. The intermediate result buffer is implemented using a ci
buffer. Figure 13 shows buffers of size 4, and both buffers contain two tuples. This arrang
resembles a pipeline where intermediate results flow along the pipeline toward the
constraint. As in the classical producer-consumer problem, a thread in the pipeline blocks
its output buffer is full or when its input buffer is empty. Whenever a thread blocks, the q
scheduler picks the next thread to run. By keeping the size of the intermediate buffers s
on the order of 100 elements—the system can “push” intermediate results down the p
towards the output before early joins compute their complete results.

The join threads must be scheduled correctly to minimize the response time. We use a
queue scheduling scheme that prefers threads closer to the end of the pipeline. As a
intermediate results flow towards the end of the pipeline because consumers closer to
will run before joins earlier in the pipeline will produce new intermediate results. For exam
in Figure 13 the thread executing join C1 will block when it fills the remaining slots in
intermediate buffer or when it finishes scanning through input collections. Then the sch
will select and run the thread executing join C2 because it is closer to the end of the pipeli
it has non-empty input and non-full output buffers.

Although the thread pipeline itself increases the speed of output generation, we optim
further by time-slicing the threads. Time-slicing prevents a slow (or highly selective) join a
beginning of the pipeline from running for a long time before filling its output buffer. With
time-slicing, if the first join does not completely fill its output buffer it would run to complet
before a thread switch occurs, and the first query output would not appear before the ent
join is completed. Instead, the scheduler preempts threads after they have used up th
slice and schedules the new highest-priority thread. Thus, if the first join produced
intermediate results during its time slice, these results are pushed down the pipeline, sho
32

 slices

ead
sult

area of
n. De
nt in
ins are
side of
rence,

quality
the time to produce the first result. To keep thread switching overhead low, we keep time
reasonably long (e.g., 100 ms per slice).

Time-slicing and pipelining work best in concert. Using just time-slicing without thr
priorities would lead to inefficient thread scheduling. Omitting limited size buffers would re
in additional memory overhead when intermediate results are large.

3.3.8 Related Work

The query optimizations discussed in section 3.3.4 were influenced by research in the
databases. Ullman [170][171][172] discusses basic insights about efficient join evaluatio
Witt et al. [53] and Lehman and Carey [121] indicate that the hash-join algorithm is efficie
main memory databases, a fact that we used in our implementation. Debugger hash jo
different from the database hash joins because the left-hand side and the right-hand
equality constraints have to be evaluated for hash table indexing. Regardless of this diffe
the cost formula is preserved, and hash joins are efficient for debugging queries. For ine

Collection of
objectOutliners

Variable o

Figure 13. Incremental delivery pipeline

Collection of
columnMorphs

Variable m

Buffer of tuples (o, m, r)

Collection of rowMorphs
Variable r

Buffer of tuples (o, m)

(o morphs
includes: m)?

(m morphs
includes: r)?

(o1, m1, r1)
(o1, m1, r2)

(o2, m3)

(o1, m2)

C1

C2
33

in our
ped
 that

also
aphs
i and
are a
tigate
rrent
mber of
.

 and
ases—
e main
ontain

ts, the

used an
ning

 times.
 in the
eduling
ted the
rement.

queries
mple in
s. The
 (see

ueries
 inputs
cult to
hey had
ries 18
joins, an efficient sort-merge join [121] could be used, but it has not been implemented
system. Numerous researchers [40][93][96][97][113][136][160][164][194] have develo
algorithms to find optimal or near-optimal join orderings. Ibaraki and Kameda [93] proved
join ordering problem is NP-complete by reducing CLIQUE [70] to it. The authors
proposed an optimal left-deep join ordering algorithm for acyclic join graphs (for cyclic gr
the algorithm gives approximate results). The KBZ algorithm [113] improves on Ibarak
Kameda’s algorithm. Steinbrunn, Moerkotte and Kemper [42][160] investigate and comp
number of heuristic and randomized algorithms. Swami and others [162][163][164] inves
and propose heuristic and randomized algorithms improving on the KBZ algorithm. Cu
databases use the exponential exhaustive search of all possible join orders when the nu
joins in a query is small. Query-based debuggers also may be able to use this approach

Unfortunately, the proposed algorithms assume perfect knowledge of join sizes
selectivities. Also, the characteristics of a query-based debugger are different from datab
the number of objects per domain is smaller than in databases, but all objects reside in th
memory, so input/output time is not a factor. On the other hand, debugger queries may c
calls to expensive methods. Due to the uncertainty of selectivities and single join cos
debugger uses simple heuristics drawn from the experience with debugging queries.

3.4 Experimental Results

We tested the debugger on a number of realistic and synthetic queries. For our tests we
otherwise idle Sun Ultra 2/2200 machine (with a 200 MHz UltraSPARC processor) run
Solaris 2.5.1 and a modified version of Self 4.0. Execution times reported are elapsed
Times were measured with millisecond accuracy. We observed a variance of about 10%
measurements due to various asynchronous events in the Self VM and user thread sch
effects. We also measured the total CPU time to verify that no other processes disrup
measurements. We chose the lowest time observed during three repetitions of a measu

3.4.1 Benchmark Queries

We ran the tests using both realistic queries as well as artificial queries. Table 1 lists the
and their sizes. We selected a number of realistic queries and tried to present a fair sa
terms of query complexity, query evaluation methods, and query input and output size
realistic queries (1–12) dealt with inputs ranging from 10 to 1,000 objects per type
Table 1). Queries 1–8 involve the Self GUI, and queries 9–12 involve the Cecil compiler.

To test the limits of the debugger’s performance, we also evaluated difficult synthetic q
(queries 13–19) that are less likely to be asked in real life. These queries involved larger
that contained tens of thousands of objects (except query 18). Some of them were diffi
evaluate efficiently because the system could not use hash joins (query 17), or because t
an empty result set (query 15), where incremental delivery techniques did not help. Que
34

es that

e these
es not

sult set.

aluated
and 19 are realistic but time-consuming, so they were grouped together with other queri
place considerable stress on the debugger’s performance.

Queries can be divided into the following broad classes:

• Queries 6, 10, 11, 12, 14, and 19 are simple one-constraint selection queries. Sinc
queries along with queries 4 and 5 have only one constraint, their evaluation time do
depend on join optimization.

• Queries 1, 2, 5, 7, 8, 10, 15, and 17 are assertion queries that have an empty re
Incremental delivery techniques do not affect their response time.

• Queries 7, 8, 9, 13, 15, 16, and 18 have some equality constraints that can be ev
using hash joins, while the other queries use only nested-loop joins.

Query Input Output

1. morph a b c. (a morphs includes: b) && (c morphs includes: b) && (a != c) 37*37*37 0

2. objectOutliner a; rowMorph b; columnMorph c. (a morphs includes: b) &&
(b morphs includes: c)

12*146*370
0

3. objectOutliner a; rowMorph c; columnMorph b. (a morphs includes: b) &&
(b morphs includes: c)

12*146*370
1

4. objectOutliner a; columnMorph b. (a morphs includes: b) 12*370 11

5. objectOutliner a; rowMorph b. (a morphs includes: b) 12*146 0

6. objectOutliner a. (a morphs size = 0) 12 1

7. objectOutliner a; smallEditorMorph b. (a titleEditor = b) && (b owner = a) 12*16 0

8. objectOutliner a; columnMorph b; labelMorph c.
(a morphs includes: b) && (c owner = b) && (a moduleSummary = c)

12*370*1006
0

9. cecil_named_object a; cecil_top_context b; cecil_object_binding c.
(a defining_context = b) && (b varBindings includes: c) && (c value = a)

69*4*79
68

10. cecil_named_type a. (a instantiations size != 0) 198 0

11. cecil_named_type a. (a subtypes size != 0) 198 3

12. cecil_method a. (a resultTypeSpec printString = 'int') 167 2

13. point a; rectangle b. (a x = b origin y) && (a x = 6) 11195*4579 6,780

14. point a. a x = 256 11195 2

15. point a; rectangle b b1.
(a x = b origin y) && (b height = b1 height) && (b != b1) && (b1 height = 1000)

11195*4579*
4579

0

16. point a; rectangle b b1.
(a x = b origin y) && (b height = b1 height) && (b != b1) && (b1 height > 1000)

11195*4579*
4579

12,467

17. rectangle b b1. (b height > (b1 height + 800)) && (b width < (b1 width - 900)) 4579*4579 0

18. cecil_method a b; cecil_formal c d.
(a formals includes: c) && (b formals includes: d) && (c name = d name) && (c != d)
&& (a != b)

167*167*179
*179 7042

19. mutableString a. (a asSlotIfFail: [abstractMirror]) isReflecteeSlots 15540 11,281

Table 1: Sample queries with their input and output sizes
35

itive

 code

d to
r, the
the end

duce

es, and
after an

 than a
 and the
took a
3.4.2 Execution Time

Figure 14 shows the execution times of all queries, split into four components:

• Primitive time, the time spent computing the input domains of the query using the prim
described in section 3.3.2.

• Translation time, the time spent choosing a query evaluation order and generating the
to execute the query.

• Response time, the time spent producing the first result (not including the time neede
display it in the graphical user interface). For queries producing an empty answe
response time includes the entire query evaluation because the user has to wait until
of the query evaluation to learn the outcome.

• Completion time, the remaining execution time needed to complete the query and pro
all results.

For example, for query 16, it took less than 0.2 seconds to collect all points and rectangl
less than 0.1 seconds to translate the query into Self code. The first result appeared
additional 0.7 seconds, and it took another 1.2 seconds to complete query evaluation.

Overall, the results are encouraging, with most of the realistic queries (1-12) taking less
second to evaluate. For these queries, the median response time was 0.33 seconds,
median completion time was 0.33 seconds. Query 18 was the only realistic query that
long time to evaluate, but even there the first result appeared in less than a second.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
(s

ec
.)

Query number

Primitive Time

Translation Time

Response Time

Completion Time

Figure 14. Query execution times

20.7 5.9
36

queries,
ery was
tem to
system

ds to
tion—

emory
ammer
tion

st and
t-deep
our join
lobally
clude

 using
ll for
en in

t times
. Our
than 10
 bad

verhead
Some of the artificial queries (13-16) also executed in the subsecond range. For these
the median response time was 0.89 seconds, and the median time to complete the qu
1.14 seconds. Query 17 took 20.7 seconds to complete. This query is difficult for the sys
evaluate efficiently because it does not contain equality constraints. Consequently, the
can not use hash joins. The debugger had to execute a nested-loop join for 4579×4579
rectangles, evaluating the first constraint 21 million times. Query 19 took 2 secon
complete. This query is a simple selection query, but it performs a time-consuming opera
compilation of the Self code string—for each mutable string.

We found that many queries had such enormous outputs that our machine ran out of m
trying to produce results. Usually, such queries are asked by mistake, since the progr
probably would not want to look at millions of tuples in a result. A straightforward restric
on the result size eliminates system crashes and alerts users to this type of mistake.

3.4.3 Join Ordering

To see how well the query optimizer works, we compared its performance against the be
worst join orderings. In this experiment, we executed the queries using all possible lef
orderings that perform selections first. Such orderings correspond to the search space of
ordering algorithm. In all cases, the best ordering in this search space was indeed the g
optimal ordering, so the search space limitation did not influence the results. We did not in
queries with only one constraint in this experiment.

Figure 15 compares the best and the worst query completion times to the completion time
the ordering found by our system. The results show that query optimization works we
small queries1, but the join ordering does not matter very much for such queries since ev
the worst case they take less than a second to execute.

However, larger and more complicated queries have much wider range of best and wors
(Table 2). Queries 16 and 18 clearly demonstrate the need for join order optimization
system evaluates query 16 in 2.2 seconds, but the worst-case execution time is more
minutes. Our system does not perform optimally all the time; it sometimes finds fairly

1 Sometimes, though, the debugger has an execution time slightly higher than the “worst” one due to the optimization o
and random system events.
37

livery

, query
rall, the
recall
ental
r the

mple,
duces
cause
orderings, but the outcome of the join ordering may be cushioned by the incremental de
methods discussed later.

3.4.4 Incremental Delivery

Incremental delivery significantly reduces the response time of the system. For example
18 took 5.9 seconds to complete but produced the first result in less than a second. Ove
response time ranged from 12% to 100% of the completion time with a median of 87% (
Figure 14). Excluding queries with empty answer sets (which cannot benefit from increm
delivery) the median ratio is 73%, i.e., incremental delivery reduces the waiting time fo
programmer by about 27%.

The use of incremental delivery also limits sizes of intermediate collections. For exa
query 18 runs out of memory when executing in non-incremental mode because it pro
enormous intermediate results. In incremental mode, it evaluates successfully be
intermediate result sizes are limited by buffer sizes.

Query number Best Actual Worst
16 1.1 2.2 631

17 17 20.7 27.2

18 3 5.9 130

Table 2: Completion time depending on join ordering
(large queries)

1 2 3 7 8 9 15

0

0.5

1

1.5

2

2.5

3

3.5

C
om

pl
et

io
n

tim
e

(s
ec

.)

Query number

Best Time

Actual Time

Worst Time

Figure 15. Completion time depending on join ordering
(small queries)
38

ted all
ments
licing

sertion
ssertion,
but the
e time
d, the
lmost
 equal

ies and
seful

lained
 much
ed joins
ur test
ced a
he one

es to
downs
 1.97.
 much
 of join

nt than
mains,
ery 18).

 of the
ponse
 in less
To check the influence of time-slicing on the response time of different queries, we evalua
queries using time slices ranging between 100 ms and infinite time slice. The experi
showed that time-slicing does not have visible effect on most queries. However, time-s
becomes important for large queries with small result sets. For example, if we take as
query 17 that has an empty result set, and add an object to the system that violates the a
the query execution pattern changes. The assertion originally took 20 seconds to verify,
object violating the assertion is found early in the execution. Consequently, the respons
is 3 seconds, while the completion time remains 20 seconds. If the time-slicing is disable
first join in the query does not fill the intermediate buffer, so no thread switches occur a
until the end of the execution. As a result, without time-slicing the response time becomes
to the completion time of 20 seconds.

In summary, incremental delivery can substantially shorten the response time; large quer
queries with nested loop joins benefit most from incremental delivery. Time-slicing is a u
enhancement when dealing with large queries.

3.4.5 Hash Joins

Many queries can use hash joins to avoid computing the full Cartesian product. But as exp
in section 3.3.5, some joins must be computed the hard way, using nested loops. How
slower are such joins? To answer this question, we re-executed all queries that use hash
with hashing disabled. Table 3 shows the slowdowns of these query evaluations. In o
system, slowdowns ranged from 0.6 to 2 with a median of 0.98. Query 15 experien
speedup because the optimizer found a better join ordering for nested-loop joins than t
used for hash joins. When we increased the size of each relevant domain by five tim
simulate a system with five times more objects than the original Self system, the slow
became substantial (right column of Table 3), ranging from 0.32 to 15.6 with a median of
The evaluation of query 18 was faster using nested-loop joins in the small system, but
slower in the large system. Query 16 had almost the same evaluation speed regardless
method.

The results of these preliminary experiments indicate that hash joins can be more efficie
nested-loop joins, although they slow down several of our test cases. With large input do
the performance advantage of hash joins can exceed an order of magnitude (e.g., in qu

Fortunately, even if hash joins could not be used, incremental delivery can mask much
nested-loop join overhead by producing the first result quickly. Table 4 shows the res
times both with and without hashing. For these queries the first results can be produced
39

the two

 [122].
es, i.e.,
ations.
ential
ges. We
blem.
m the
triction
roved
dges
 more
than a second, and the response time varies by less than a factor of two between
configurations.

3.5 Related work

Queries containing only object references can be rephrased in a graph-theoretical form
Consider a class of queries in which objects relate to other objects only through referenc
consider situations where object constraints do not contain method or expression evalu
Answering such a query is equivalent to finding a subgraph conforming to the given refer
constraints in a graph formed by the runtime objects as nodes and their references as ed
call the problem of finding such subgraphs the Generalized Pattern Matching (GPM) pro
This problem is a special case of Subgraph Isomorphism [70] that significantly differs fro
general problem because the outgoing edges of a vertex have unique labels—a res
arising from the fact that object fields referring to other objects have unique names. We p
the GPM problem to be NP-complete even for bipartite graphs with only two outgoing e
(Appendix A). We did not further pursue the graph approach because queries are
expressive.

Query
number

Original
system

5x larger
system

7 0.93 1.13

8 1.18 1.97

9 2 6.42

13 1.94 5.76

15 0.63 0.32

16 0.98 0.91

18 0.6 15.6

Table 3: Slowdown of nested queries vs. hash queries

Query number Nested (sec.) Hash (sec.) Ratio
7 0.33 0.35 0.93

8 0.7 0.6 1.18

9 0.7 0.5 1.46

13 0.89 0.96 0.92

15 0.5 0.8 0.63

16 0.93 0.98 0.95

18 0.72 0.92 0.78

Table 4: Response time (time to first result)
40

lping to
 static

based
m a
mber

or all
nd and

drange
uery
ns of
.

3.6 Summary

Query-based debugging allows programmers to ask queries about the program state, he
check object relationships in large object-oriented programs. Our implementation of the
query-based debugger combines several novel features:

• A new approach to debugging: Instead of exploring a single object at a time, a query-
debugger allows programmers to quickly extract a set of interesting objects fro
potentially very large number of objects, or to check a certain property for a large nu
of objects with a single query.

• A flexible query model: Conceptually, a query evaluates its constraint expression f
members of the query’s domain variables. The present model is simple to understa
to learn, yet it allows a large range of queries to be formulated concisely.

• Good performance: Many queries are answered in one or two seconds on a mi
workstation, thanks to a combination of fast object searching primitives, q
optimization, and incremental delivery of results. Even for longer queries that take te
seconds to produce all results, the first result is often available within a few seconds
41

42

t

hen the
ng the
d in
ointer-

tionship
ram’s

at
y an

ing
n will
tually
nerates

 has to
help

 other
r-
4 Dynamic Query-Based Debugger
“A little help at the right time is better than a lo
of help at the wrong time.”

Tevye

“Good information is hard to get. Doing
something with it is even harder!”

L. Skywalker

4.1 Introduction

Many program errors are hard to find because of a cause-effect gap between the time w
error occurs and the time when it becomes apparent to the programmer by terminati
program or by producing incorrect results [58][59][60]. The situation is further complicate
modern object-oriented systems which use large class libraries and create complicated p
linked data structures. If one of these references is incorrect and violates an abstract rela
between objects, the resulting error may remain undiscovered until much later in the prog
execution.

For example, consider a possible error in thejavac Java compiler discussed in section 2. Wh
would happen if an abstract syntax tree (AST) built during a compilation is corrupted b
operation that assigns the same expression node to the fieldright of two different parent nodes
(Figure 16). The parent nodes may be instances of any subclass ofBinaryExpression; for

example, the parent may be anAssignAddExpression object or aDivideExpression object, while the
child could be anIdentifierExpression. The compiler traverses the AST many times, perform
type checks and inlining transformations. During these traversals, the child expressio
receive contradictory information from its two parents. These contradictions may even
become apparent as the compiler indicates errors in correct Java programs or when it ge
incorrect code. But even after discovering the existence of the error, the programmer still
determine which part of the program originally caused the problem. How can we
programmers to find such errors as soon as they occur?

As discussed in section 2, data breakpoints [180], conditional breakpoints [109], and
conventional tools do not help in finding thejavac error. A more effective way to check an inte

Figure 16. Error in javac AST

Expression 2

BinaryExpression 1

Expression 1right

BinaryExpression 2

right
43

ased
object

e
ized

s of
uery is
d may

1.)

ased
top the
r finds

e query
ynamic
d it

ortable
 from
rams,
ts, we
00,000
 model
in the
al for

 syntax

all

ration
es
object constraint would be to combine conditional breakpoints with the static query-b
debugger described in section 3 [123]. A static query-based debugger (SQBD) finds all
tuples satisfying a given boolean constraint expression. For example, the query

BinaryExpression* e1, e2. e1.right == e2.right && e1 != e2

would find the objects involved in the abovejavac error. The breakpoints would then carry th
condition that the above query return a non-empty result. Unfortunately, even well-optim
SQBD executions would be inefficient for this task. With hundreds or thousand
BinaryExpression objects, each query becomes quite expensive to evaluate, and since the q
reevaluated every time a conditional breakpoint is reached, the program being debugge
slow down by several orders of magnitude. (This claim is substantiated in section 4.4.3.

To overcome this inefficiency, we extend the query-based debugging to allowdynamic queries
[124]. In addition to implementing the regular QBD query model, a dynamic query-b
debugger continually updates the results of queries as the program runs, and can s
program as soon as the query result changes. To provide this functionality, the debugge
all places where the debugged program changes a field that could affect the result of th
and uses sophisticated algorithms to incrementally reevaluate the query. Therefore, a d
query-based debugger finds thejavac AST bug as soon as the faulty assignment occurs, an
does so with a minimal programmer effort and a low program execution overhead.

We have implemented such a dynamic query-based debugger for Java. Our prototype is p
(written in 100% pure Java) and surprisingly efficient. Experiments with large programs
the SPECjvm98 suite [158] show that selection queries are very efficient for most prog
with a slowdown of less than a factor of two in most experiments. Through measuremen
determined that 95% of all fields in the SPECjvm98 applications are assigned less than 1
times per second. Using these numbers and individual evaluation times, our performance
predicts that selection queries will have less than 43% overhead for 95% of all fields
SPECjvm98 applications. More complicated join queries are less efficient but still practic
small query domains or programs with infrequent queried field updates.

4.2 Query Model and Examples

Dynamic query-based debugging uses the query model from section 3.1 adapted for Java
and semantics. Consider anotherjavac query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd

The first part of the query is thesearch domain of the query, and should be read as “find
FieldExpressionsfe and all FieldDefinitionsfd in a system such that...”.FieldExpression is a class
name and its domain contains all instances of the class. If a “*” symbol in a domain decla
follows the class name (as in thejavac query discussed in the introduction), the domain includ
44

s of the

ch tuple
d in the
d not
ugger
ns; we

roduct
 the
fter the

er stops
uery as
r will
ibe the

ts. For

 is

applet
mple
other,
all objects of subclasses of the domain class; otherwise the domain contains only object
indicated class itself.

The second part of the query specifies the constraint expression to be evaluated for ea
of the search domain. Constraints are arbitrary Java conditional expressions as define
Java specification §15.24 [78] with certain syntactic restrictions. Expressions shoul
contain variable increments which have no semantic meaning in a query. The deb
currently does not handle array accesses. Constraints can contain method invocatio
assume that these methods are side-effect free.

As for the static queries, the expression will be evaluated for each tuple in the Cartesian p
of the query’s individual domains, and the query result will include all tuples for which
expression evaluates to true. Conceptually, the dynamic debugger reevaluates a query a
execution of every bytecode, ensuring that no result changes are unnoticed. The debugg
the program whenever the result changes. In reality, the debugger reevaluates the q
infrequently as possible without violating these semantics. In addition, the debugge
reevaluate only the part of the query that changed since the last evaluation. We descr
incremental reevaluation technique in detail in section 4.3.5.1.

The dynamic query debugger does not allow to query temporal properties of the objec
example, the queries cannot find token objects that changed their value from aCharacterToken to
the UninitializedToken. Such functionality would involve using temporal logic operators and
beyond the scope of this thesis.

4.2.1 Ideal Gas Tank Example

For another example illustrating the need for dynamic query debuggers, consider an
simulating a tank with ideal gas molecules (Figure 17). Although this applet is a si
simulation of gas molecules moving in the tank and colliding with the tank walls and each

Figure 17. Error in molecule simulation

Molecule collision

Gas tank

Molecule
45

in the

ecules.
gular
so on.

ilures
an the

te. The
tinue

d have
to find

ntains a
 class
roved
d-time
have an
tion in

bug a
custom
ebugger
it has some interesting inter-object constraints. First, all molecules have to remain with
tank, a constraint that can be specified by a simple selection query:

Molecule* m. m.x < 0 || m.x > X_RANGE || m.y < 0 || m.y > Y_RANGE

Another constraint requires that molecules do not occupy the same position as other mol
Even this simple application may violate the constraint in different places: in the re
moleculemove method, in a method that handles molecule bounces from the walls, and
The following query discovers the constraint violation:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

This constraint is interesting because its violation is a transient failure. Transient fa
disappear after some period of time, so even though the program behaves differently th
programmer expected, queries will not be able to detect failures if they are asked too la
molecule collision error is such a transient failure—it will disappear as the molecules con
to move. However, the applet will behave erroneously: for example, molecules that shoul
collided with each other will pass through each other. Dynamic queries are necessary
transient failures, as a delayed query reevaluation may fail to detect the error entirely.

4.3 Implementation

We have implemented a Java dynamic query-based debugger in pure Java. Java co
number of features that simplified the implementation. We used the ability to write custom
loaders [125] to perform load-time code instrumentation. Java’s bytecode class files p
simple to instrument. The debugger creates custom query evaluation code by using loa
code generation. The debugger can be ported to other languages (e.g., Smalltalk) that
intermediate level format similar to bytecodes. We discuss issues of such implementa
section 4.3.6 and section 4.3.7.

4.3.1 General Structure of the System

Figure 18 shows a data-flow diagram of the dynamic query-based debugger. To de
program, the user runs a standard Java Virtual Machine with a custom class loader. The
class loader loads the user program and instruments the bytecodes loaded, by adding d

Figure 18. Data-flow diagram of dynamic query-based debugger

Java program

Query string
and change

set

Custom
debugger code

Instrumented
 Java

Custom
class loader

Standard Java
Virtual Machine

Query
results

Debugger
library code
46

er also
xecutes
ints, it
aluate
readed

original
 class

through

 section
s

tation

 a Java
nd

il: how
uates a

er then
lt of the
ge set
invocations for each domain object creation and relevant field assignment. The class load
generates and compiles custom debugger code. After loading, the Java virtual machine e
the instrumented user program. Whenever the program reaches instrumentation po
invokes the custom debugger code, which calls other debugger runtime libraries to reev
the query and to generate query results. The debugger currently does not handle multith
code.

Logically, the program control flow can be divided into four important sections:

• Shell—the Java wrapper program that takes the class name and arguments of the
program together with the query string. This section of the system creates a custom
loader instance, loads the program using this class loader, and starts the execution
the reflection interface.

• Class loader—loads the program class and all classes requested by it as defined in
2.16 of theJavaTM Virtual Machine Specification[127]. During loading process, instrument
class files as described below.

• Original program—executes the original program invoking the debugger at instrumen
points.

• Query evaluator—parses the query expression using a JLex [23] generated lexer and
Cup [91] generated parser1 [12], creates runtime structures for query evaluation, a
evaluates the query using them when it is invoked from the original program.

The rest of this section discusses the most important parts of the debugger in more deta
the debugger instruments a Java program, what parts it instruments, and how it eval
query.

4.3.2 Java Program Instrumentation

To enable a dynamic query for a program, the user specifies a query string. The debugg
instruments class files to invoke the debugger after all events that may change the resu
query. The debugger finds assignments to the fields referenced in the query chan

1 The parser uses a restricted Java expression grammar extracted from the full Java grammar [30].
47

 inserts

rument
 class

ides
 parts:
ass file

A, to
onstant

ing for
file, the
ray

ng the
ception
nd the

ke

pe
bugger
eld
(section 4.3.3) and inserts debugger invocations after each one of them. The system also
debugger invocations after each call to a constructor of a domain object.

Figure 19 shows an example of the instrumentation process for a Java method. To inst
class files, the loader transforms them in memory into a malleable format using modified
file handling tools borrowed from the BCA class library [106]. The BCA class library prov
functionality to read a class file and parse it in memory into data structure representing its
constant pool, fields, methods, interfaces, and attributes. The program handles the cl
format described in section 4 ofThe JavaTM Virtual Machine Specification [127]. We have
extended the framework to parse structures that were not modified in the original BC
convert method bytecodes into objects and back into a byte array, to add changes to the c
pool and to the method code, and to write the instrumented class file back to the disk.

The instrumentation method iterates through the code of all class file methods search
field assignments and object creations that have to be instrumented. In a Java class
method code is stored in thecode attribute of the method. The debugger transforms a byte ar
of code into a list ofBytecode objects, instruments the code by changing or addingBytecode

objects, and transforms it back into a byte array using the Visitor design pattern [68]. Duri
instrumentation, the debugger preserves code validity by adjusting branch targets and ex
handlers. After instrumentation, the instrumentation program updates the code length a
stack size of a method.

Iterating through the method code, the debugger finds allputfield bytecodes andinvokespecial

bytecodes. The loader determines allputfield bytecodes that assign to the fields of interest—li
field x in Figure 19—and replaces theseputfield bytecodes withinvokestatic bytecodes invoking
the debugger. The system also inserts such debugger invocations after eachinvokespecial call to
a constructor of a domain object.

The debugger determines that aputfield bytecode should be instrumented by checking the ty
of the field assigned by the bytecode in the constant pool of the class. In Figure 19, the de
would inspect the constant pool entry 37, and realize that the bytecode assigns to the fix of

Figure 19. Java program instrumentation

...
x += ...;
...

...
22: iadd
23: putfield 37
26: aload_0
...

Compile

...
22: iadd
23: invokestatic debug
26: aload_0
...

public final class DebuggingCode implements RunTimeCode {
public static void debug(Molecule updatedObject, int newValue) {
... updatedObject.x = newValue; // replaces putfield 37

QueryTool.runTool(updatedObject); // invokes query evaluator
}

}

Load and instrument
48

ct
re the

so does

s
ss file’s

r each
 in two
 is

f the
er the
ctors.
al, so

y be
object
n the

such
gger.

ve
 an
nce is

tion on

at and

 query
ts and
theMolecule class. When the debugger replaces aputfield bytecode with aninvokestatic call, it also
inserts the method name and type information about the invokeddebug method of the
DebuggingCode class into the constant pool of the instrumented class. Thedebug method is
different for each domain (change set) class, so its type information depends on theputfield

replaced. Thedebug method takes two arguments: the object that theputfield would have
updated—aMolecule object in Figure 19—and thenewValue value to be assigned to the obje
field—in this case an integer number. These objects are already on the stack befo
execution of theputfield, so they will be correctly passed as arguments to thedebug method, and
the debugger does no stack manipulation of the instrumented method. The debugger al
not use additional local variables, avoiding data-flow analysis.

Since the originalputfield has been replaced by theinvokestatic bytecode, the customdebug

method performs the assignment originally executed by theputfield. The debugger determine
the name of the assigned field and the correct types of objects and values from the cla
constant pool.

To monitor object construction, the debugger inserts a debug method invocation afte
bytecode that constructs a domain object. In Java class files, the objects are created
stages. First, a new object is created using thenew bytecode. Then, the constructor method
invoked using theinvokespecial bytecode. According toThe JavaTM Virtual Machine
Specification ([127] section 4.9.4), the object cannot be used between the creation o
uninitialized object and its initialization. Consequently, we insert debugger invocations aft
constructor termination. This approach misses query violations occurring in constru
However, it may be argued that the values in the fields of uninitialized objects are not leg
query evaluation with them would not follow the intentions of the programmer. It ma
possible to safely insert debugger invocation in the middle of constructor method after
fields are initialized to their “correct” initial values, but before any other housekeeping i
constructor. The data-flow analysis of the constructor methods necessary for
instrumentation could be done in the full-fledged implementation of a query-based debu

The debugger invocation after theinvokespecial bytecode is similar to the one described abo
for invocations replacingputfield bytecodes. However, in this case the debugger inserts
additionaldup bytecode to duplicate the created object reference on the stack. This refere
the only parameter passed to the debugging method. To account for additional duplica
the stack, the maximal size of the stack is increased.

After instrumentation, the class loader transforms the code back into the class file form
passes the image to the defaultdefineClass method.

The class loader instruments assignments and object constructors that influence the
result. The next section describes how the debugger determines which assignmen
constructors to instrument.
49

rogram
ed has
 result

ew object
e call

query’s
hange
. Such
 object
 which

s
as

rences.

al
A
 objects
r. The
 which
bjects
otype
o not
splitting
ts. For

it also
 when a
4.3.3 Change Monitoring

The dynamic query debugger updates the query result every time the debugged p
performs an operation that may affect the query result. Thus, the program being debugg
to invoke the debugger after every event that could change the query result. The query
may change because some object assigns a new value to one of its fields or because a n
is constructed. However, not all field assignments and object creations affect the query. W
the set of constructors and object field assignments affecting the results of a query the
change set. Although we can use all assignments and all constructors as a conservative c
set for any query, we are interested in a minimal change set for efficient query evaluation
a change set contains only constructors of domain objects and assignments to domain
fields referenced in a query. The change set is used by the class loader to determine
assignments and constructors it should instrument.

Consider theMolecule query:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

The change set of this query consists of the constructors of theMolecule class and its subclasse
as well as assignments toMolecule fieldsx andy. Assignments to other molecule fields such
color do not belong to the change set.

The change set of a query becomes complicated if constraints contain a chain of refe
Consider a query for the SPECjvm98 ray tracing program:

IntersectPt ip. ip.Intersection.z < 0

The Intersection field is aPoint object, and the query result depends on itsz value. The query
result may change if thez value changes, or if a new value is assigned to theIntersection field.
Furthermore, thePoint object referenced by theIntersection field may be shared among sever
domain objects. In this case, a change in onePoint object can affect multiple domain objects.
chain of references also occurs when a domain instance method invokes methods on
referenced in its fields, and these methods in turn depend on the fields of the receive
process of tracking which objects accessed through a chain of field references influence
domain objects becomes a complicated task; for example, to do it efficiently, nested o
need to point back to the domain objects that reference them. To simplify the prot
implementation, we support only explicit chains of references in the query, and we d
handle methods that access chains of references. Our debugger rewrites the query by
the chain into single-level accesses and by adding additional domains and constrain
example, the ray tracing query above is rewritten as:

IntersectPt ip; Point* __Intersection.
ip.Intersection == __Intersection && __Intersection.z < 0

Chain reference splitting adds overhead by introducing additional joins into the query but
allows users to ask more complex queries. The overhead can be an order of magnitude
50

e their

omain
es

dded to
led

. The
t of the

uery-
ains at
 low.
tions.
he new
query
ation
d parts
ection,
omain
tions
ignored
nt. After
ferences

ough it
cessary
aluated,
usually

 results
C, i.e.,
ut the

 can be
selection query is rewritten as a join query. We do not handle native methods becaus
debugging is outside the scope of a Java debugger.

The change set is determined automatically by examining the query string. First, the d
classes are added into theMonitoredClasses structure. Second, the fields of domain class
referenced in the query are added to theMonitoredFields collection of the corresponding
MonitoredClass instance. If fields are inherited from superclasses, these classes are also a
the MonitoredClasses collection with fields referenced. Method invocations are not hand
automatically, but users can specify fields used by the query methods by hand.

To summarize, we use the change set of the query to instrument the Java program
instrumented program calls the debugger after every event that could change the resul
query, and the debugger reevaluates the query during each call.

4.3.4 Domain Collection Maintenance

Unlike the static query-based debugger implementation (section 3.3.2), the dynamic q
based debugger does not request the Virtual Machine to provide all objects of query dom
each query reevaluation. Even if such functionality was available, its efficiency would be
Instead, the debugger tracks all domain objects by maintaining domain object collec
Every time a domain object is created, the program invokes the debugger which places t
domain object into its domain collection. The debugger uses the domain collection in
evaluations to iterate through all domain objects. To facilitate incremental query reevalu
(section 4.3.5.1), the debugger partitions domain collections into changed and unchange
after each monitored event. To maintain query correctness and to facilitate garbage coll
the debugger allows the garbage collector [103][173][192] to delete dead objects from d
collections. This behavior is implemented by referring to the objects in domain collec
through weak pointers. As a result, the debugger’s references to the domain objects are
by the garbage collector, and the garbage collector behaves as if no debugger was prese
program-unreachable objects are garbage collected, the debugger discards null weak re
that previously pointed to the collected objects.

The debugger does not use weak references in the intermediate result collections. Alth
would be easy to use weak references in the intermediate result collections, it is an unne
overhead. These collections are discarded and recomputed every time the query is reev
so they themselves are garbage collected. Since the query reevaluation frequency is
greater than the garbage collection frequency, the current implementation works fine.

For queries that have non-empty results (section 4.6), the debugger should update these
when domain objects are garbage collected. However, to support the result update on G
to remove the tuples containing garbage collected objects and to inform the user abo
changes in the result, the debugger has to be aware of the garbage collection. This
51

y using

, so for
ot allow

 could
ensive
 This

ogram.
t. If the
he field.
her the

the
e
o the

ng the

igned to
ecules
ulation
 by the
ation.
achieved by changing the JVM garbage collector, by using weak reference queues, or b
finalizable weak references. We have not implemented this functionality.

Using weak references adds an additional overhead to the query domain maintenance
small programs users can use a system that references objects directly and does n
garbage collection of domain objects1.

To confirm that the query results do not contain otherwise dead objects, the system
perform full garbage collection and reevaluate the query again. Such option would be exp
but worthwhile for users who want to be certain about the validity of the query results.
option is not implemented in the current system.

4.3.5 Overview of Query Execution

This section describes query evaluation after an instrumented event in the debugged pr
Whenever the program invokes the debugger, it passes the object involved in the even
event is a field assignment, the program also passes the new value to be assigned to t
Figure 20 shows the control flow of the query execution. First, the debugger checks whet
changed object is a domain object. Consider a query that findsId objects with a negative type
code:

Id x. x.type < 0

Here,Id is a subclass of theExpression class, and thetype field is defined inExpression. Thus, the
program may invoke the debugger when thetype field inherited from theExpression class is
assigned in an object of anotherExpression subclass. For example, the program invokes
debugger after assigning thetype field in anArithmeticExpression object. This object shares th
type field with the domain class objects, but it does not belong to the query domain, s
debugger immediately returns to the execution of the user program without reevaluati
query.

If the object passes the domain test, the debugger checks whether the value being ass
the object field is equal to the value previously held by the field. For example, some mol
do not move in the ideal gas simulation, yet their coordinates are updated at each sim
step. Such assignments do not change the result of the query and can be ignored
debugger. The debugger does not perform this test if the invoking event is an object cre

1 The experiments in this chapter were performed on such system. See section 4.4.

Same value
assignment test

Instrumented
event

Domain
test

Query
reevaluation

Result
update

Figure 20. Control flow of query execution
52

ed due

ing the

ut do not
t, other
 query

ot
exploit

l query
r uses

rom the
 the last
ts is
rialized
f three

mbol

se the
 result
sertion
nly the
ger
ure 21
ith the
h the
eneral,
 up the
ation in
e

This test is just one example of tests that quickly verify whether a query result has chang
to the assignment. Assignments that do not change the query result are calledinvariant
assignments. If the system can infer that an assignment is invariant, it can skip evaluat
query. Another set of assignments that could be used to optimize the system aremonotonic
assignments. Such assignments either increase the query answer set or decrease it b
both add and remove some elements to the answer set. Not counting the equality tes
invariant and monotonic assignments depend on the query semantics. For example, if a
has an inequality constraintx.y < 0, a decrease of fieldy would be monotonic because it could n
decrease the size of the answer set. Future implementations of the debugger could
invariant and monotonic events.

After these two tests, the debugger starts reevaluating the query. The non-incrementa
evaluation algorithm is described in section 3.3.3. The dynamic query-based debugge
incremental reevaluation to improve the efficiency of the previous algorithm.

4.3.5.1 Incremental Reevaluation

When a program invokes the debugger, it passes the changed object to the debugger. F
properties of our change sets, we know that this object is the only one that changed since
query evaluation. Consequently, a full reevaluation of the query for all domain objec
unnecessary. We use incremental reevaluation techniques developed for updates of mate
views in databases [26][34] to speed up the query execution. Consider a query, a join o
domainsA * B * C, e.g.,

A a; B b; C c. a.x == b.y && b.z < c.w

The “*” symbol denotes a Cartesian product with some selection constraint; the “+” sy
below denotes a set union. If an object of domainB changes, the new result of the query is

A * (B + ∆B) * C = (A * B * C) + (A * ∆B * C)

The transformation of the result into the formula on the right hand side is correct becau
Cartesian product and union operations are distributive. The first part of the result is the
of the previous query evaluation. The debugger stores this result—usually empty for as
queries—and does not need to reevaluate it. The second part of the result contains o
changed object (∆B) of the domainB combined with objects of the other domains. The debug
evaluates the changed part in the same way as it would evaluate the whole query. Fig
shows an incremental evaluation of changes in the query result. The execution starts w
changed object∆B passed from the user program. Because this is the only object for whic
debugger evaluates the first constraint, the intermediate result is likely to be empty. In g
the size of intermediate results is much smaller in the incremental evaluation, speeding
query evaluation. If intermediate results are not empty, the debugger continues the evalu
the usual manner and produces the incremental result(A * ∆B * C). The system then merges th
result with the previous result to form the complete query result.
53

hash
ime and
or join

Instead
 goes
uate just
d on the

ring the

d and
ent test
aint on
The query evaluation is further optimized by finding efficient join orders and by using
joins as described in section 3.3. Because sizes of domains change during program runt
we cannot efficiently determine the selectivities of constraints, we use a simple heuristic f
ordering: execute selections first, equality joins next, and inequality constraints last.

4.3.5.2 Custom Code Generation for Selection Queries

Constraints of selection queries are usually very simple and can be evaluated very fast.
of performing the general query execution algorithm described in section 4.3.5.1, which
through numerous general steps and calls a number of methods, the debugger can eval
the few tests necessary to check the selection constraints. Because these tests depen
query asked, the code for their evaluation has to be generated at program load time. Du
loading of the user program, the debugger generates a Java class with adebug method. We show
such a method in Figure 22 for the query

Molecule1 m. m.x > 350

The first three statements of the method contain the code common for both unoptimize
optimized versions. This code performs the domain test and the same value assignm
described in section 4.3.5. The optimized code that follows evaluates the selection constr

Collection A

Figure 21. Incremental query evaluation

Changed object ∆B Collection (A * ∆B)
Instrumented
assignment

Collection (A * ∆B * C)

+
Collection (A * B * C)

Collection C

Figure 22. Selection evaluation using custom code

public final class DebuggingCode implements RunTimeCode {
public static void debug (Molecule updatedObject, int newValue) {

// Code common for both general and optimized versions
if (! (updatedObject instanceof Molecule1))
{ updatedObject.x = newValue; return; }
if (updatedObject.x == newValue) return;
updatedObject.x = newValue;
// Instead of calling general query evaluation method,
// evaluate constraint here
if (updatedObject.x > 350)

QueryTool.outputResult(updatedObject);
}

}

54

ult. The
ches
d
re, the

nts

ts and
ods in

 events.
rce of

Either
 be

 itself

sed to

ation
Lange
tion
e three
uthors,
e code

ent
rogram
d object
though
.

the changed object and calls the debugger runtime only if the query has a non-empty res
debugger uses thedebug method as an entry point that the user program calls when it rea
instrumentation points. With custom code generated, thedebug method contains all code neede
to evaluate a selection, so the reevaluation costs only one static method call. Furthermo
debug method—a member of afinal class—may even be inlined into the instrumentation poi
by a JIT compiler. We could also inline the bytecodes into the instrumented method.

4.3.6 Related Work

Debugger implementations use a variety of techniques to gather information about objec
to instrument program code. This section discusses runtime information gathering meth
more detail.

4.3.6.1 Runtime Information Gathering Techniques

Debuggers providing data about runtime events use different techniques to detect these
The implementation of event monitoring can be divided into three categories by the sou
event information:

• Program itself. The program is instrumented to provide data about runtime events.
program text [50][51][116][129], its bytecode form, or the executable [109] can
instrumented.

• Runtime system. The runtime system provides the information about events either by
or through its modification.

• Operating system debugging interface. The operating system or its debugger is u
gather the information.

Most program debugging and visualization systems such as HotWire [116] and Ov
[50][51] instrument the program text to generate events of interest during the execution.
and Nakamura [117][118][119][120] investigated program instrumentation, reflec
(metaclass) protocol, and the HeapView Debugger to track objects in the heap. Thes
methods belong to the three different categories outlined above. According to these a
source code instrumentation offered the fastest trace generation, but required sourc
modification and program recompilation.

Consens et al. [44][45] use the Hy+ visualization system to find errors using post-mortem ev
traces. De Pauw et al. [52] and Walker et al. [182] use program event traces to visualize p
execution patterns and event-based object relationships, such as method invocations an
creation. All these systems use program instrumentation to obtain the event traces, al
Kimelman et. al. [111] also use information provided by the underlying operating system
55

 or by
load

to the
 scope
ld be
e more
ifficult
 event
ever,

 to these
Both
nt

to the
had to
e, the
itional
ble code
reas as

mation
ceive
es a
use

ction
ficient

ely,
s to
ilities.

ystem
debugger
 of this
 of their
world
Laffra [113] discussed Java source code instrumentation by using a preprocessor
modifying thejavac compiler. We have opted for class file bytecode instrumentation at
time.

None of the debugging projects modify compilers to add visualization code. In contrast
class loader modification, changing a compiler is considered a major effort outside of the
of debugger implementations. Although using compilers to add debugging code wou
roughly equivalent to the preprocessor based code instrumentation, the compiler could b
efficient in added code or more powerful by accessing objects and their state, which is d
to access from the preprocessor directives. Compilers do implement assertions—an
gathering technology supported in programming languages such as Eifel [134]. How
adding assertions to languages like Java necessitates implementation schemes similar
of other debugging constructs [56][105] and is rarely done by compiler modification.
Handshake [56] andjContractor [105] use load-time class file instrumentation to impleme
Java assertions. The BCA tool [107] changes a small part of thejavac compiler to incorporate
class file loading through the BCA subsystem.

The bytecode instrumentation used in the dynamic query-based debugger is similar
technique proposed by Kessler [109] to implement fast breakpoints. However, Kessler
deal with a more difficult problem of instrumenting executable code. In executable cod
system would not be able to replace a short instruction with a long one, or to insert add
instructions, because control flow addresses cannot be adjusted as easily in the executa
as they can be in the bytecode. Executable code instrumentation was used in such a
software-based fault isolation [181].

To avoid source code modification, some debugging systems use runtime system infor
for event monitoring. Laffra’s [113] LTK Visual Java Debugger uses a patched JVM to re
the method call and exit information. Similarly Hotwire’s implementation for Smalltalk us
patched version of GNU Smalltalk [113]. Lange and Nakamura [117][118][119][120]
reflection capabilities of the IBM SOM to get debugging information. In Java, the refle
package and debugger API provide hooks into the Java VM which are unfortunately insuf
for object-oriented visualizations or query-based debugging. The newJavaTM Platform
Debugger Architecture [98] gives debugger writers access to more information. Unfortunat
the current version of JavaTM Platform Debugger Architecture does not yet allow debugger
retrieve a collection of all objects of a class, nor does it provide code instrumentation fac

Yet another way of accessing debugging information is to use available operating s
debugging interfaces. In most cases, such an approach has a high cost because the
runs in a separate address space and incurs expensive context switches. In spite
drawback, Lange and Nakamura chose to use the debugger interface in the final version
system because they deemed source code instrumentation impractical for real
applications.
56

of the
rite

odern
itored
lacing
r upon
based
chine,

explores
grams.

ugged
-time

 [57].
 (Figures

case
is the
JVM-

cts
host,
 hosts,
Classification of the event-gathering debugger implementations is very similar to that
data breakpoint implementations [108][179][180]. If processors provide support for w
monitors, data breakpoints can use this facility. This approach, though available in m
processors, has very limited functionality; for example, only ten locations can be mon
using Intel x86 breakpoint registers. Data breakpoints can also be implemented by p
objects in write-protected virtual memory pages and transferring control to the debugge
a page trap or by using other write-barrier techniques [87][109]. To implement the query-
debugger using the above two approaches, one would have to modify the Java Virtual Ma
an approach that we avoided for portability reasons.

Since the query-based debugger uses Java bytecode instrumentation, the next section
alternative load-time instrumentation techniques that can be used to instrument Java pro

4.3.6.2 Load-Time Code Instrumentation

Our system uses load-time code modification to insert debugger invocations in the deb
program. The instrumentation is done by providing a custom class loader. Other load
instrumentation alternatives were comprehensively explored by Duncan and Hölzle in
Here the available techniques, their advantages and disadvantages are briefly recapped.
courtesy of Duncan and Hölzle.)

The main goal of load-time adaptation (LTA) is to intercept a file request from thehost program
and to use atool program to adapt the file before providing it to the host program. In the
of debugging event gathering, the host program is the Virtual Machine, while the tool
class file instrumentor. Here we present different load-time adaptation techniques for
instrumentor combination:

• Modifying the host (VM) (Figure 23). This approach has been used in numerous proje
both in Java world [7][106][138] and beyond it [86]. Since this technique modifies the
it has limited portability, both because the implementation cannot be reused for other

Figure 23. Modifying a VM to implement LTA.

Loader Linker Init etc.

LTA Runtime Modify VM’s data path here

Virtual Machine

class
file
57

he tool
 able to

e inside
lobal

ide the

lass
h the
lasses
t, the

e loaded
fined
 a hook
vely
ntation.

g
e host
erating
,
od nor
 file,
ystem
and because it has to be provided for all hosts of the supported class, i.e., all VMs. T
implementers may not have an access to the host source code and so may not be
support such a host. The advantage of this approach is that the file adaptation is don
a host that “understands” the file and has additional host-specific information (e.g., g
data-flow), so it can do sophisticated transformations that may not be possible outs
host.

• Custom class loaders (Figure 24). The approach of using custom class loaders to load c
files is confined only to the Java Virtual Machines and the class files loaded throug
loaders [125]. Although custom class loaders are powerful because they intercept c
loaded both from the files and through the network, they have several limitations. Firs
system classes are not accessible to the custom class loaders because they ar
directly by the JVM system class loader. Second, the interaction of multiple user-de
class loaders is confusing. The advantage of custom class loaders is that they use
provided by the Java Virtual Machine definition [127], so tool programming is relati
easy and can be done in Java. We have used this approach in our prototype impleme
This approach was also used in other systems [43][187].

• Intercepting system calls (Figure 25). It is possible for the tool to intercept the operatin
system calls with which libraries request files. This method does not depend on th
program and on the type of files accessed. A drawback of this approach is that it is op
system specific. Although Solaris provides a/proc interface for the system call interception
other operating systems may not have such convenient hooks [13]. Neither this meth
the following library call interception method can determine the program requesting a
so they cannot adjust the adaptation behavior to different hosts. The UFO global file s
uses this approach for handling file requests [13].

Figure 24. Performing LTA with a custom class loader.

System Loader

etc.

Virtual Machine

Custom Loader

System classes

User-defined
classes

class LTALoader
extends java.lang.ClassLoader

{ ... LTA code ... }

delegation
58

the
revious
nt and
 uses
gram

f its

 should
at the
based
sed in
d Pascal
ld it
• Intercepting library calls (Figure 26). This approach intercepts file open requests from
host to the standard libraries. It shares most advantages and disadvantages with the p
approach. Though it is operating system independent, it is standard library depende
can easily be applied only when libraries are dynamically linked. The Proteus system
this approach to add assertions to the Java language [57]. The Xab PVM pro
monitoring system [22] also uses library replacement for PVM call interception.

Further investigation of load-time adaptation is beyond the scope of this work. Any o
variations can be applied to the dynamic query-based debugger implementation.

4.3.7 Dynamic Query Debugger Implementations for Other Languages

To be practical for a wide range of debugging tasks, the dynamic query-based debugger
be applicable and implementable for various programming languages. It is clear th
concept of debugging with queries can be used in all object-oriented and object-
languages. Similar principles (although with different implementation concerns) can be u
programming languages with structures or records (procedural languages such as C an
and functional programming languages such as Haskell, Lisp, and ML). How difficult wou
be to port the debugger into environments of these languages?

Figure 25. Implementing LTA by intercepting system calls.

Standard OSVM

fopen() open()

Library

LTA RuntimeIntercept system call here

Process context

Figure 26. Implementing LTA using dynamic linking.

Standard OSVM

fopen()

Library
LTA

Library

_open() open()
59

rmat
diate
ation.
sed and
dling
es [4].
f field
uch

 into the

e a
cts of
of the

ger
upport
c code
ntime

alltalk)
, C++,

ugging
edict
fferent
ds of
ver the
 queries
s with
 large
bugger
 every
should
The following key issues influence the difficulty of porting:

• Instrumentation. Instrumentation can be done at a source level or at the intermediate fo
level. The Java bytecode format is well suited for instrumentation. Other interme
formats such as Smalltalk bytecodes may provide similar ease of instrument
Instrumenting source code is more complicated, because this code needs to be par
transformed into some temporary format before instrumentation. Instrumenting or han
compiled code is probably prohibitive unless some VM based code standard emerg
In languages allowing unrestricted use of pointers such as C and C++, handling o
assignments through instrumentation may prove difficult if not impractical. For s
languages, one would need to use alternative approaches, such as placing objects
read-only memory and invoking the debugger on write traps.

• Domain object gathering. This would be easy in languages like Smalltalk that provid
standard way of retrieving all objects of a class. On the other hand, tracking all obje
the same type in languages such as Pascal may require significant modification
compiler and the runtime system.

• Runtime code generation and evaluation. To evaluate query expressions, the debug
needs to generate and evaluate code during program runtime. Smalltalk and Self s
dynamic code generation. For other languages such as C and Pascal, dynami
generation would be problematic. Although the execution of C statements during ru
is present in thegdb debugger, it is not simple to implement.

From our experience, porting the debugger to pure object-oriented languages (e.g. Sm
would be possible without a lot of changes. Support of procedural languages such as C
and Pascal would be more difficult.

4.4 Experimental Results

Ideally, a test of the efficiency of a dynamic query-based debugger would use real deb
queries asked by programmers using the tool for their daily work. Although we tried to pr
what queries programmers will use, each debugging situation is unique and requires di
queries. To perform a realistic test of the query-based debugger without writing hundre
possible queries, we selected a number of queries that in complexity and overhead co
range of queries asked in debugging situations. The selected queries contain selection
with low and high cost constraints. The test also includes hash-join and nested-join querie
different domain sizes. The queries check programs that range from small applets to
applications and (for stress-tests) microbenchmarks. These applications invoke the de
with frequencies ranging from low to very high, where a query has to be evaluated at
iteration of a tight loop. Consequently, the experimental results obtained for the test set
indicate the range of performance to be expected in real debugging situations.
60

Query

S
lo

w
do

w
n

Invocation
frequency
(events / s)

1. Molecule1 z. z.x > 350 1.02 15,000

2. Id x. x.type < 0 1.11 16,000

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 1.25 169,000

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 1.18

1,900,000

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 1.27

6. spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 1.37

7. spec.benchmarks._201_compress.Output_Buffer z.
z.complexMathOutCnt(0)

5.83

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 1.18 933,000

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 0 1.10

196,00010. spec.benchmarks._201_compress.Compressor z.
z.complexMathOutCount(0)

1.83

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 1.23 787,000

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.98 2,300,000

13. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir
&& z.radius == z1.radius (33x33 hash join)

2.13 54,000

14. Lexer l; Token t. l.token == t && t.type == 27
(120,000x600 hash join)

3.43 25,000

15. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

229 350,000

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0
(1x1 hash join)

157 1,500,000

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count
 (1x1 join)

77 2,600,000

18. Test5 z. z.x < 0 6.4 42,000,000

19. TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join) 228
40,000,000

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 930

Table 5. Benchmark queries
61

MHz
 Java

curacy
nd

fferent

he time
 100

ped

r

e

s test
s.

ge of
t that
For our tests we used an otherwise idle Sun Ultra 2/2300 machine (with two 300
UltraSPARC II processors and 384 MB physical memory) running Solaris 2.6 and Solaris
1.2 with JIT compiler (Solaris VM (build Solaris_JDK_1.2_01, native threads, sunwjit)) [99] with a
128 MB heap. Execution times are elapsed times and were measured with millisecond ac
using theSystem.currentTimeMillis() method. All executions used only main memory a
contained no paging disk I/O. (Full experimental results are reported in Appendix B.)

4.4.1 Benchmark Queries

To test the dynamic query-based debugger, we selected a number of structurally di
queries (Table 5) for a number of different programs (Table 6):

• Queries 1 and 13 check a small ideal gas tank simulation applet that spends most of t
calculating molecule positions and assigns object fields very infrequently. It has
molecules divided amongMolecule1, Molecule2 and Molecule3 classes. The application
performs 8,000 simulation steps.

• Queries 2 and 14 check theDecaf Java subset compiler, a medium size program develo
for a compiler course at UCSB. TheToken domain contains up to 120,000 objects.

• Query 3 checks theJess expert system, program from the SPECjvm98 suite [158].

• Queries 4–10, and 16–17 check thecompress program from the SPECjvm98 suite. Ou
queries reference frequently updated fields ofcompress.

• Queries 11–12 and 15 check the ray tracing program from the SPECjvm98 suite. ThPoint
domain contains up to 85,000 objects; theIntersectPt domain has up to 8,000 objects.

• Queries 18–20 check artificial microbenchmarks. These microbenchmarks stres
debugger performance by executing tight loops that continuously update object field

Structurally, queries can be divided into the following classes:

• Queries 1–12 and 18 are simple one-constraint selection queries with a wide ran
constraint complexities. For example, query 4 has a very simple low-cost constrain

Application Size (Kbytes) Execution time (s)

1. Compress 17.4 50

2. Jess 387.2 22

3. Ray tracer 55.7 17

4. Decaf 55 15

5. Ideal gas tank 14.3 57

Table 6. Application sizes and execution times
62

kes a
kes a
raint in
rison.
ation
cy of
ation
of the
atical
s on all

d using
or join
s of the
e high

scusses
essary

es are
 time

 of less
actical
e model

ich can
 query
rheads
 large
ogram
s, the

based
 When
 has a
compares an object field to an integer. The more costly constraint in query 5 invo
method to retrieve an object field. Another costly alternative constraint (query 6) invo
comparison method that takes a value as a parameter. Finally, the most costly const
query 7 performs expensive mathematical operations before performing a compa
Queries 8 and 9 have very similar constraints, but differ 4.8 times in debugger invoc
frequency. In this paper, by “debugger invocation frequency” we mean the frequen
events in the original program that would trigger a debugger invocation, i.e., the invoc
frequency for a debugger with no overhead. Query 12 compares the parameter
method to the distance of a point to the origin. This query combines costly mathem
operations with increased debugger invocation frequency, because its result depend
three coordinates ofPoint objects.

• Queries 13–17 and 19–20 are join queries. Queries 13–16 and 19 can be evaluate
hash joins. The evaluation of queries 17 and 20 has to use nested-loop joins. F
queries, the slowdown depends both on the debugger invocation frequency and size
domains. Queries 13–14 have low invocation frequencies; queries 15–17, 19–20 hav
invocation frequencies. Queries 14 and 15 have large domains.

In the next section, we discuss the performance of these queries. Section 4.4.3 then di
the efficiency benefits of incremental evaluation, custom selection code, and unnec
assignment detection.

4.4.2 Execution Time

Figure 27 shows the program execution slowdown for application programs when queri
enabled. The slowdown is the ratio of the running time with the query active to the running
without any queries. For example, the slowdown of query 3 indicates that theJess expert system
ran 25% slower when the query was enabled.

Overall the results are encouraging. All selection queries except query 7 have overheads
than a factor of 2. The median slowdown is 1.24. We expect overheads of common pr
selection queries to be in the same range as our experimental queries; the performanc
discussed in section 4.5 supports this prediction.

Join queries have overheads ranging from 2.13 to 229 for applications. Hash queries (wh
be used for equality joins) are efficient for queries 13–14, and other joins are practical for
13 in which the domains contain only 33 objects each. Queries 15–17 have large ove
because of frequent invocations (e.g., 2.6 million times per second for query 16) and
domains. Join query performance is acceptable if join domains are small, and the pr
invokes the debugger infrequently. For large domains and frequently invoked querie
overhead is significant.

Microbenchmark stress-test queries 18–20 show the limits of the dynamic query-
debugger. The benchmark updates a single field in a loop 40 million times per second.
queries depend on this field, the program slowdown is significant. Selection query 18
63

lower
own of

incur a
ates are
e the
 with
down is
sed in

r
led.

d

slowdown factor of 6.4, the hash-join evaluation has a slowdown of 228 times, and the s
nested-loop join that checks twenty object combinations in each evaluation has a slowd
930 times.

Although the microbenchmark results indicate that in the worst case the debugger can
large slowdown, these programs represent a hypothetical case. Such frequent field upd
possible only with a single assignment in a loop. Adding a few additional operations insid
loop drops the field update frequency to 3 million times per second which is more in line
the highest update frequencies in real programs. For such update frequencies, the slow
much lower as indicated by query 4. The likelihood of high update frequencies is discus
section 4.5.

There are several parts that contribute to the query overhead:

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.5

1

1.5

2

2.5

3

3.5

S
lo

w
do

w
n

Query number

Figure 27. Program slowdown (queries 15–20 not shown)

5.83

The slowdown is the ratio of the running time with the query active to the running time without any queries. Fo
example, the slowdown of query 3 indicates that the Jess expert system ran 25% slower when the query was enab

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10

20

30

40

50

60

70

80

90

100

O
ve

rh
ea

d
pe

rc
en

ta
ge

Query number

Loading

GC

First evaluation

Evaluation

Figure 28. Breakdown of query overhead as a percentage of total overhea
For example, 3% of query 14 overhead is spent on instrumentation, 34% on garbage collection, 3% in the
first evaluation, and 60% in subsequent reevaluations.
64

 using
ion.

 the

oin
eded for
 time,

e the
se the

uery 14
3% of
ations.

g takes
s
e, as in

hen
ion was
uery 1
ng time

 weak
hange

ions for
ollected,
 system

er with
arbage

 a faster

unning
s some
an be
ce the
• Loading time, the difference between the time it takes to load and instrument classes
a custom class loader, and the time it takes to load a program during normal execut

• Garbage collection time, the difference between the time spent for garbage collection in
queried program and the GC time in the original program.

• First evaluation time,the time it takes to evaluate the query for the first time. For j
queries, the first query is the most expensive, because it sets up data structures ne
future query reevaluations. We separate this time from the rest of the query evaluation
because it is a fixed overhead incurred only once.

• Evaluation time, the time spent evaluating the query. This component does not includ
first evaluation time. The first evaluation time and the evaluation time together compo
total evaluation time.

Figure 28 shows the components of the overhead. For example, 3% of the overhead of q
is spent on instrumentation, and 34% on garbage collection. The total evaluation time is 6
the overhead, with 3% spent in the first evaluation, and 60% spent in subsequent reevalu
On average, the largest part of the overhead is the evaluation time (75.5%), while loadin
only 17% and garbage collection has a negligible overhead (less than 7%) in most case1. The
loading overhead becomes a significant factor when the loaded class hierarchy is larg
query 3 on theJess system. The loading overhead also takes a larger proportion of time w
query reevaluations are infrequent or fast as in queries 1, 2, 9, and 11. Garbage collect
not a significant factor except in query 14 which creates 120,000 token objects, and in q
which has such a small absolute overhead that even a slight increase in GC and loadi
becomes a large part of the overhead.

The experiments were executed with a version of the debugger that does not use
references for domain collections. Using the system with weak references does not c
results for selection queries, because the debugger does not track the domain collect
selection queries. Query 17 runs 40% slower because no domain objects are garbage c
and the weak references only add needless overhead. Users can choose to use the
without weak references if they expect such program behavior. Query 15 executed fast
factor 49 overhead vs. factor 229 overhead. For this query, the domain objects become g
and are garbage collected. So, in this case, the system with weak references provides
and more correct query evaluation.

The evaluation component dominates the overhead, especially in high-overhead, long-r
queries, so evaluation optimizations are very important for good performance. We discus
optimizations already reflected in this graph in the next section. Loading overhead c
further reduced by using efficient class file representations during instrumentation. Sin

1 Experiments were run with 128M heap, a factor that decreased the GC overhead.
65

Query
Slowdown
versus non-

instrumented

Slowdown
 versus

optimized

1. Molecule1 z. z.x > 350 1.19 1.16

2. Id x. x.type < 0 613 554

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 7135 5,725

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0475 402

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0474 373

6. spec.benchmarks._201_compress.Output_Buffer z.
z.lessOutCnt(0)

587 428

7. spec.benchmarks._201_compress.Output_Buffer z.
z.complexMathOutCnt(0)

513 88

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0275 233

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 037 33.8

10. spec.benchmarks._201_compress.Compressor z.
z.complexMathOutCount(0)

40 21.8

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 10,500 8,496

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000)17,800 8,972

13. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33x33 hash join)

21.96 10.3

14. Lexer l; Token t. l.token == t && t.type == 27
(120,000x600 hash join)

1,973 576

15. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

12,400 54

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0
 (1x1 hash join)

1,708 11

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 &&
z1.OutCnt / 10 > z.out_count (1x1 join)

697 9

18. Test5 z. z.x < 0 5,213 821

19. TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join) 1,491 6.6

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 5,602 6.02

Table 7. Overhead of non-incremental evaluation
66

ndling

er, we

ueries.
 of this

 query
tio of

uery
ontrast,
erhead,
bugger
s; some
d query
ite the

ly fast.
out 50

ntal
d its

ental
ass of

 ran all
wn in
rsion
f the
 times

n,
nefit is
s with
loading overhead is insignificant in most cases, we did not pursue the class file ha
optimizations.

4.4.3 Optimizations

To evaluate the benefit of optimizations implemented in the dynamic query-based debugg
performed a number of experiments by turning off selected optimizations.

4.4.3.1 Incremental Reevaluation

The dynamic query debugger benefits considerably from the incremental evaluation of q
We disabled incremental query evaluation and reran all queries. Table 7 shows the results
experiment. The first column of numbers in the table shows the ratio of non-incremental
running time to the running time of the original program. The second column shows the ra
non-incremental query running time to the running time of fully optimized incremental q
evaluation. For example, query 2 had a factor of 613 overhead and ran for 2.5 hours. In c
the same query ran 554 times faster using the incremental reevaluation, had only 11% ov
and finished in 16.4 seconds. Query 1 was the only query that the non-incremental de
could evaluate in a reasonable time. The overheads of all other queries were enormou
programs would have run for more than a day. (For queries 3–12 and 14–17, we stoppe
reevaluation after the first 100,000 evaluations and estimated the total overhead.) Desp
large overall overhead, the individual non-incremental query evaluations are reasonab
For example, even for large join queries 14 and 15, a single query evaluation only took ab
ms.

The join queries oncompress have an overhead of only 9–11 compared to the increme
optimized version. These joins did not benefit much from incremental evaluation an
optimizations because the domains of these joins contain only a single object.

Overall, the experiments with non-incremental evaluation of queries show that increm
evaluation is imperative, greatly reducing the overhead, and making a much larger cl
dynamic queries practical for debugging.

4.4.3.2 Custom Generated Selection Code

To estimate the benefit of generating custom code, as discussed in section 4.3.5.2, we
selection queries with the optimization disabled. The results of the experiment are sho
Table 8. The first column of numbers shows the slowdown of the unoptimized ve
compared to the original program. The second column indicates the slowdown o
unoptimized version compared to the optimized version. For example, query 4 ran 68.5
slower than the original program and 58 times slower than the optimized query.

The ideal gas tank applet andDecaf compiler queries did not benefit from this optimizatio
because these programs reevaluate the query infrequently, and the optimization be
masked by variations in the start-up overhead. All other queries show significant speedup
67

cy of
edup of

e being
ments

on the
e from

other
nce in
e same-
ction
the optimization enabled. The benefit of the optimization increases with the frequen
debugger invocations; overall, custom generated selection code produces a median spe
15.

4.4.3.3 Same Value Assignment Test

Before evaluating a query after a field assignment, the debugger checks whether the valu
assigned to the object field is equal to the value previously held by the field. Such assign
do not change the result of the query and can be ignored by the debugger.

Table 9 shows that the number of unnecessary assignments differs highly depending
programs and fields. While some programs and fields do not have them at all, others hav
7% to 95% of such assignments. Only the ideal gas tank simulation, theJess expert system, and
the ray tracing application have unnecessary assignments to the queried fields.

To check the efficiency of the same-value test, we disabled it while leaving all
optimizations enabled. The results show that the test does not make much of a differe
query evaluation for most queries. For selections that can be evaluated fast, the cost of th
value test is similar to the cost of the full selection evaluation. Only when the sele

Query
Slowdown
versus non-

instrumented

Slowdown
 versus

optimized

1. Molecule1 z. z.x > 350 1.05 1.03

2. Id x. x.type < 0 1.46 1.34

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 11.70 9.26

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 68.5 58

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 64 51

6. spec.benchmarks._201_compress.Output_Buffer z.
z.lessOutCnt(0)

65 47

7. spec.benchmarks._201_compress.Output_Buffer z.
z.complexMathOutCnt(0)

69.6 12

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 43.6 37

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 010.5 9.6

10. spec.benchmarks._201_compress.Compressor z.
z.complexMathOutCount(0)

11 6

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 21 15

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 61 31

13. Test5 z. z.x < 0 1,952 307

Table 8. Benefit of custom selection code (selection queries only)
68

ins, the
essary
 make a

e extra
ms, but
ssion is

 query
and on

and

nge the
se—a
constraint is costly (as in query 4), does the same-value test reduce the overhead. For jo
cost reduction is significant for the ideal gas tank query that contains 54% unnec
assignments. For other joins, the percentage of unnecessary assignments is too low to
difference.

To summarize, the test whether an assignment changes a value of a field costs only on
comparison per debugger invocation. It does not change the overhead for most progra
saves time when the number of unnecessary assignments is large or the query expre
expensive.

4.5 Performance Model

To better predict debugger performance for a wide class of queries, we constructed a
performance model. The slowdown depends on the frequency of debugger invocations
the individual query reevaluation time. This relationship can be expressed as follows:

T = Toriginal (1 + Tnochange * Fnochange + Tevaluate * Fevaluate)

This formula relates the total execution time of the program being debuggedT and the execution
time of the original programToriginal using frequencies of field assignments in the program
individual reevaluation times. The model divides field assignments into two classes:

• Assignments that do not change the value of a field. These assignments do not cha
result of the query. The debugger has to perform only two comparisons in this ca
domain test and the value equality test, so it spends a fixed amount of time (Tnochange) in
such invocations independent of the query. We calculatedTnochange by running a query on a

Query
Slowdown

versus
optimized

%
unnecessary
assignments

1. Molecule1 z. z.x > 350 0.99 95%

2. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 0.997 7%

3. spec.benchmarks._205_raytrace.Point p. p.x == 1 0.988 15%

4. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.16 40%

5. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33x33 hash join)

1.61 54%

6. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

1.02 15%

Table 9. Unnecessary assignment test optimization
(excluding queries with no unnecessary assignments)
69

e/JVM

 query

 This
ments

hen
ion
size
e

 of the
al field

uring
ments.
cation
ed the
ons to

ts per
marks

econd.
ch

m98
 in the
million
 fields
 have

d as a
6
e of
program that repeatedly assigned the same value to the queried field; for the machin
combination we used,Tnochange = 66 ns.

• Assignments that lead to the reevaluation of a query. The time to reevaluate a queryTevaluate

for such an assignment depends on the query structure and on the cost of the
constraint expression. For each query, we calculateTevaluate by dividing the additional time
it takes to run a program with a query into the number of debugger invocations.
calculation gives an exact result for programs that have no unnecessary assign
(Fnochange = 0). For example, for query 18Tevaluate is 131ns.Tevaluate for query 4 is 140 ns,
which is close to the time to evaluate a similar query in a microbenchmark. W
constraints are more costly,Tevaluate increases; for example, for the highest cost select
query (query 10) it is 4.26µs. It is even higher for join queries where it depends on the
of domains in joins; for example, for query 16 it is 60µs, and for query 15 which has larg
domains, it is 546µs.

Using the values of reevaluation times and the frequency of assignments to the fields
change set, we can estimate the debugging overhead. First, we determine the typic
assignment frequency.

4.5.1 Debugger Invocation Frequency

The debugger invocation frequency is an important factor in the slowdown of programs d
debugging. The program invokes the debugger after object creation and after field assign
For most queries, the field assignment component dominates the debugger invo
frequency. To find the range of field assignment frequencies in programs, we examin
microbenchmarks and the SPECjvm98 application suite. We instrumented the applicati
record every assignment to a field. Table 10 shows results of these measurements.

The maximum field assignment frequency in microbenchmarks is 40 million assignmen
second, but that would be difficult to reach in an application because the microbench
contain a single assignment inside a loop. Thecompress program has the highest field
assignment frequency in the SPECjvm98 application suite, 1.9 million assignments per s
Other SPEC applications, as well as theDecaf compiler and the ideal gas tank applet, have mu
lower maximum field assignment frequencies.

Figure 29 shows the frequency distribution of field assignments in the SPECjv
applications. The left graph indicates how many fields have an assignment frequency
range indicated on the x axis. For example, only four fields are assigned between one
and two million times per second. The right graph shows the cumulative percentage of
that have assignment frequencies lower than indicated on the x axis; 95% of all fields
fewer than 100,000 assignments per second.

To predict the overhead of a typical selection query, we can now calculate the overhea
function of invocation frequency. Figure 30 uses the minimum (130 ns) and maximum (4.2µs)
values ofTevaluate from Table 10 to plot the estimated selection query overhead for a rang
70

es per
luation
eries

verhead
ns, the

query
 one
 field is

field

w-cost
ith the
invocation frequencies. For example, a selection query on a field updated 500,000 tim
second would have an overhead of 6.5% if its reevaluation time was 130 ns. If the reeva
time was 4.26µs, the overhead will be a factor of 3.13. The graph reveals that selection qu
on fields assigned less than 100,000 times a second—95% of fields—have a predicted o
of less than 43% even for the most costly selection constraint. For less costly selectio
query overhead is acceptable for all fields.

The worst case frequency scenario for a selection query evaluation would occur if a
referenced all fields of an application. This would imply that the application has only
class—an uncommon case. In this case, the query would be evaluated every time every
assigned. The frequency of such evaluations is given in Table 11. Except of thecompress

program, the total field assignment frequencies are within the range of individual

0.
1

0.
5 1 5 10 50

10
0

50
0

10
00

50
00

10
K

50
K

10
0K

50
0K 1M 2M

0

10

20

30

40

50

60

70

80

90

100

C
um

ul
at

iv
e

pe
rc

en
ta

ge
 o

f f
ie

ld
s

Field assignment frequency

0.
1

0.
5 1 5 10 50

10
0

50
0

10
00

50
00

10
K

50
K

10
0K

50
0K 1M 2M

0

50

100

150

200

250

N
um

be
r

of
 fi

el
ds

Field assignment frequency

Figure 29. Field assignment frequency in SPECjvm98
0.

1

0.
5 1 5

10 50

10
0

50
0

10
00

50
00

10
K

50
K

10
0K

50
0K 1M 2M

0

1

2

3

4

5

6

7

8

9

10

S
lo

w
do

w
n

Field assignment frequency

Low cost

High cost

Figure 30. Predicted slowdown
The graph shows the predicted overhead as a function of update frequency. For example, the predicted overhead of a lo
selection query on a field updated 500,000 times per second is 6.5%; the predicted overhead of a high-cost query w
same frequency is a factor of 3.13.
71

Query
Fevaluate

(assignments
per second)

Tevaluate
(µs)

1. Molecule1 z. z.x > 350 N/A N/A

2. Id x. x.type < 0 16,000 3.73

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 169,000 3

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0

1,900,000

0.140

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 0.208

6. spec.benchmarks._201_compress.Output_Buffer z.
z.lessOutCnt(0)

0.286

7. spec.benchmarks._201_compress.Output_Buffer z.
z.complexMathOutCnt(0)

3.7

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 933,000 0.193

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 0

196,000

0.488

10. spec.benchmarks._201_compress.Compressor z.
z.complexMathOutCount(0)

4.26

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 787,000 0.486

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000)2,300,000 0.461

13. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33x33 hash join)

N/A N/A

14. Lexer l; Token t. l.token == t && t.type == 27
(120,000x600 hash join)

25,000 56.8

15. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

350,000 546

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0
(1x1 hash join)

1,500,000 60

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 &&
z1.OutCnt / 10 > z.out_count (1x1 join)

2,600,000 51

18. Test5 z. z.x < 0 42,000,000 0.131

19. TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join)
40,000,000

5.7

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 23

Table 10. Frequencies and individual evaluation times
72

 we can

is
e, the
l each
 time

d.

s than
ns and

tops as
eries to
ant to

 out if
ence of
ld not
assignment frequencies (lower than 2.6 million assignments per second). Consequently,
argue that the overhead of most selection queries would be acceptable for debugging.

In the current model, the evaluation timeTevaluate models all sources of query overhead. Th
time includes the actual reevaluation time as well as the additional garbage collection tim
class instrumentation cost, and the first evaluation cost. It would be more exact to mode
of these overheads separately. However, for long running programs the evaluation
dominates the total cost, so the values ofTevaluate are likely to fall in the range we have covere

In summary, the performance model predicts that most selection queries will have les
43% overhead. The model can be used as a framework for concrete overhead predictio
future model refinements.

4.6 Queries with Changing Results

So far we have discussed using dynamic queries for debugging, where the program s
soon as the query returns a non-empty result. However, programmers can also use qu
monitor program behavior. For example, in the ideal gas tank simulation, users may w
monitor all molecule near-collisions with a query:

Molecule* m1 m2. m1.closeTo(m2) && m1 != m2

Programmers may use this information to check the frequency of near-collisions, to find
near-collisions are handled in a special way by the program, or to check the correspond
program objects with the visual display of the simulation. In this case, the debugger shou

Application

Maximum single field
assignment frequency
(field assignments per

second)

Total field assignment
frequency

(field assignments
per second)

Original program
execution time (s)

1. Compress 1,900,000 7,800,000 50.4

2. Jess 169,000 1,100,000 22.45

3. Db 254 897 75

4. Javac 217,000 2,600,000 38

5. Mpegaudio 495,000 2,600,000 57.4

6. Jack 27,000 214,000 27

7. Ray tracer 787,000 2,200,000 17

8. Decaf 56,000 528,000 15

9. Ideal gas tank 23,150 70,000 57

10. Microbenchmark 40,000,000 40,000,000 2.4

Table 11. Maximum field assignment frequencies
73

am and
tion of
ograms
esults

support
-based
bugger
1, the
andling
e new
m the

rated by

update
e only
g each
stop after the result becomes non-empty, but instead should continue executing the progr
updating the query result as it changes. Such monitoring, perhaps coupled with visualiza
the changing result, can help users understand abstract object relationships in large pr
written by other people. How can a debugger support continuous updating of query r
while the program executes?

The dynamic query-based debugger described above needs only a few changes to
monitoring queries. The basic scheme and the implementation of the dynamic query
debugger discussed in section 4.3 remain the same. The only new component of the de
is a module that maintains the current query result. As discussed in section 4.3.5.
debugger reevaluates only the changed part of the query. Consequently, the result h
module must store the query result from the previous evaluation and then merge it with th
partial result. To achieve that, after query execution the debugger deletes all tuples fro
previous result that contain the changed domain object and inserts the new tuples gene
the incremental reevaluation.

Experiments with queries similar to the ones in Table 5 show that adding the query result
functionality does not significantly change the query evaluation overhead (Table 12). Th
exception is the microbenchmark selection query 11 which updates the query result durin

Query Slowdown

1. Molecule1 z. z.x < 200 1.05

2. Id x. x.type == 0 1.23

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == 0 1.3

4. spec.benchmarks._201_compress.Compressor z. z.OutCnt == 0 1.19

5. spec.benchmarks._201_compress.Compressor z. z.out_count == 0 1.09

6. Molecule1 z; Molecule2 z1. z.x < z1.x && z.y < z1.y (33x33 join) 1.47

7. Lexer l; Token t. l.token == t && t.type == 0 (120,000x600 hash join) 4.09

8. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip.
(p.z == ip.t) && (p.z > 100) (85,000x8,000 hash join)

212.4

9. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1. z1.OutCnt == z.out_count

(1x1 hash join)
9.07

10. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < z.InCnt (1x1 join)

127

11. Test5 z. z.x % 2 == 0 45

Table 12. Benchmark queries with non-empty results
74

 times,
wever,
n only
ligible

nother
tervals
ficult to
ased

ts. The
loss of
ful for
ion of
ls.

gram
 result
ficant

specify
 of the
fulness
tion and
ging

e the
he class
 of the
oading
reevaluation. Consequently, the overhead of the selection increases from 6.4 times to 45
although part of this increase can be attributed to the more costly selection constraint. Ho
such frequent result updates are unlikely for most monitoring queries: programmers ca
absorb infrequent result changes, so, if results change rapidly, the display will be unintel
unless it is artificially slowed down or used off-line.

The dynamic debugger reevaluates queries whenever their results may change. A
approach useful for monitoring queries would be to reevaluate queries at regular time in
regardless of changes. This method may be advantageous when a change set is dif
determine or to achieve better efficiency for costly queries. However, the timer b
reevaluation does not guarantee an efficient reevaluation nor does it produce all resul
transient failures may be lost if animating reevaluation is applied. We decided that such
results is unacceptable for debugging. However, an imprecise animation may be help
programmers trying to understand program dynamics. Consequently, a full implementat
the debugger could include an efficient way to reevaluate queries at regular time interva

To summarize, monitoring queries are useful for understanding and visualizing pro
behavior. With slight modifications our debugger supports monitoring queries. Unless the
changes very rapidly, the additional overhead of monitoring query execution is insigni
when compared to similar debugging queries.

4.7 On-the-fly Debugging

The current implementation of the dynamic query-based debugger requires users to
queries before the program execution starts. Queries are enabled from the beginning
program execution and remain active until its end. These requirements diminish the use
of the debugger because users cannot restrict queries to parts of the program execu
cannot ask new queries in the middle of a program run. An on-the-fly debug
implementation removes these two restrictions.

The original debugger implementation could not support on-the-fly debugging becaus
debugger had to know a query and its change set to instrument class files at load time. T
loader then instrumented the assignments to the monitored fields and the creations
domain objects while loading Java class files. Class files cannot be instrumented after l
75

ould

field
 a

rogram
d

n a
f the
ate the

t

ing to
e current
ave to

itself,
rogram,
n.
rbage

hough
llection,
 create

t such
tor” to
ly, the
without changing the Java Virtual Machine. On the other hand, changing the JVM w
compromise the portability of the debugger across different Virtual Machines.

On-the-fly debugging is implemented by instrumenting all constructors and all
assignments during class load time. Around eachputfield code the debugger inserts a test and
call to the debugger if the debugger is enabled. If the debugger is not enabled, the p
executes only two additional bytecodes per eachputfield bytecode: a load of a debugger flag an
a conditional jump to the originalputfield. Figure 31 shows the instrumentation performed o
single putfield bytecode. The “fast path” has only two extra bytecodes. However, i
debugger is enabled, the overhead is higher. In this case, the debugger has to replic
reference to the updated object, pass it to the debugger’srun method and then invoke tha
method.

To support on-the-fly debugging, the debugger has to keep collections of objects belong
all classes. These collections are necessary to evaluate queries given by users. Since th
debugging API does not allow debuggers to retrieve all objects of a class, debuggers h
track creation of all program objects. Program object tracking, although inexpensive by
becomes costly because of the excessive memory use—for each object created by a p
the debugger has to maintain aWeakReference object and space in the domain collectio
Referring to domain objects through weak references allows the Java Virtual Machine ga
collector to collect all objects that are referenced only by the debugger. However, even t
domain objects are garbage collected, the weak references themselves remain in the co
so the collection grows as the program runs. Some programs like the gas tank simulation
so many temporary objects that weak references fill all available memory. To preven
internal garbage, a more sophisticated implementation uses an internal “garbage collec
recycle the weak references no longer pointing to the reachable objects. Unfortunate

Figure 31. On-the-fly debugging instrumentation

16: getstatic 133 // Get debugger activation flag

19: ifeq 14 (33) // If debugger disabled go to bytecode 33
// If debugger enabled get debugger parameters,
// perform putfield, and invoke debugger

22: dup2

23: putfield 35

26: pop

27: invokestatic 127

30: goto 6 (36) // Go to bytecode 36

33: putfield 35 // Perform original putfield

36: // end of instrumented block
76

be used

ssibly
achine.
anges
le or
ss.
reduce
ces.

 avoid

d up a
led, the

only at
bugger
ented
gular

til the
.

of all,
er is not
al field
 table
h

omains
e, the
ks
ry ever
f 62%.

 it.
internal garbage collection of weak references adds an additional overhead and should
only when the program runs out of memory without it.

4.7.1 Alternative Implementations

On-the-fly debugging could be implemented using alternative techniques that may po
increase the debugger efficiency. One approach would be to change the Java Virtual M
Even though we did not pursue this approach because of its lack of portability, JVM ch
may lead to the most efficient implementations. These changes could be simp
sophisticated. A simple JVM change1 would allow the debugger to retrieve all objects of a cla
Such capability would remove the necessity to track all objects of all classes and would
both the direct object tracking overhead and the excessive memory use by weak referen

More sophisticated JVM changes would allow to instrument already loaded classes and
the overhead of extra bytecodes surrounding eachputfield bytecode.

As mentioned above, JVM changes are not portable. An alternative technique to spee
debugger would be to use shadow classes. In other words, while the debugger is not enab
program would execute the code that is instrumented to check the debugger activation
the beginning of the methods and possibly at the back branches of the loops. When the de
is enabled, it would generate fully instrumented versions of the classes. Such fully instrum
shadow methods would be invoked through the redirection at the beginning of the re
methods. This method reduces the overhead of the instrumentedputfield execution but does not
solve the problem of object tracking. Also, the debugger activation would be delayed un
instrumentation point is reached. Due to this delay, the debugger may miss some errors

4.7.2 Experimental Results

To evaluate the on-the-fly debugger, we performed the following measurements. First
since programs instrumented by the debugger suffer a slowdown even when the debugg
enabled, we measured this slowdown. Table 13 shows slowdowns together with the tot
assignment frequencies for SPECjvm98 programs as well as microbenchmarks. This
indicates that adding two bytecodes after eachputfield costs less than 70% for applications wit
a median overhead of 25% and 3.3 times for a microbenchmark2.

If the debugger is enabled, but the query is never evaluated, for example, because d
contain only non-instantiated classes, programs suffer a larger slowdown. In this cas
instrumented byte code invokes the debuggerrun method. This method at the very least chec
whether the changed object is a domain object. With the debugger enabled, but no que
evaluated, the applications have a slowdown ranging up to 3.14 with a median overhead o

1 Implemented for JDK 1.1.5 during the initial design of the query-based debugger.
2 In the current JVM/JIT, the insertion of the same two bytecodesafter the putfield bytecode instead ofin front of it reduces
overhead from 70% to 40% for compress. This phenomenon does not occur with the JIT disabled, and we cannot explain
77

t the
 Both

 query
omain
ry 11,

rhead,
e given
le that
 on the
ation

llection

 a day.
 query
The microbenchmark slowdown is 11.14, a number increased by the fact tha
microbenchmark assigns only to a long integer field which costs more to instrument.
experiments above do not include the object tracking overhead.

Finally, if a query needs to be reevaluated, the additional slowdown to reevaluate the
depends on the query. A large part of the query reevaluation time is consumed by the d
collection maintenance and by extra garbage collection. For example, in selection que
36% of the query evaluation time was due to the object collection and additional GC ove
17% of the time was consumed by the domain class check. Overheads for all queries ar
in Table 14. Selection overhead ranges up to factor 9.5 with a median of 5.5. It is noticeab
selection query overheads almost totally depend on the program executed and neither
query itself, nor on the query reevaluation frequency. The low cost of selection reevalu
seems to be overshadowed by large overheads of on-the-fly instrumentation, domain co
maintenance and garbage collection.

Join query overheads are very high. Query 15 was aborted after running for more than
However, on-the-fly debugging may be usable when programmers only need to check
results during a part of program execution.

Application

Total
number of

field
assignments

Total
assignment
frequency

(field
assignments
per second)

Original
program
execution
 time (s)

Disabled
debugger
slowdown

Enabled
debugger
slowdown

1. Compress 392,000,000 7,800,000 50.4 1.70 3.14

2. Jess 25,000,000 1,100,000 22.45 1.30 1.54

3. Db 67,000 897 72 1.0 1.0

4. Javac 100,000,000 2,600,000 38 1.27 1.62

5. Mpegaudio 148,000,000 2,600,000 49.5 1.25 1.96

6. Jack 5,700,000 214,000 26 1.15 1.19

7. Ray tracer 44,000,000 2,200,000 17 1.12 1.62

8. Decaf 7,900,000 528,000 15 1.15 1.40

9. Ideal gas tank 4,000,000 70,000 57 1.27 2.0

10. Microbenchmark 100,000,000 40,000,000 2.4 3.28 11.14

Table 13. On-the-fly debugging overhead
78

Query

S
lo

w
do

w
n

Invocation
frequency
(events / s)

1. Molecule1 z. z.x > 350 3.23 15,000

2. Id x. x.type < 0 1.83 16,000

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 4.05 169,000

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 6.3

1,900,000

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 5.48

6. spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0)5.72

7. spec.benchmarks._201_compress.Output_Buffer z.
z.complexMathOutCnt(0)

9.36

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 5.58 933,000

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 0 5.54

196,00010. spec.benchmarks._201_compress.Compressor z.
z.complexMathOutCount(0)

9.54

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 4.82 787,000

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 4.82 2,300,000

13. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius (33x33 hash join)

21.82 54,000

14. Lexer l; Token t. l.token == t && t.type == 27
(120,000x600 hash join)

6.4 25,000

15. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

Inf 350,000

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0
(1x1 hash join)

384 1,500,000

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 &&
z1.OutCnt / 10 > z.out_count (1x1 join)

263 2,600,000

18. Test5 z. z.x < 0 28 42,000,000

19. TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join) 935
40,000,000

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 935

Table 14. On-the-fly query overhead
79

gging.
k that
n only

ueries.

ages.
oin
 rules.
e as
sed for
 differ
n rules.
ost
require
G and
s; OPSJ
G rules
thods
er does
et and

r its
join
tations
 also

sions are
ously
ferent
ments

 et al.
tion
sers all
rogram
arser.

ect
4.8 Related Work

We are unaware of other work that directly corresponds to dynamic query-based debu
Extensions of object-oriented languages with rules as in R++ [128] provide a framewor
allows users to execute code when a given condition is true. However, R++ rules ca
reference objects reachable from the root object, so R++ would not help to find thejavac errors
we discussed. Due to restrictions on objects in the rule, R++ also does not handle join q

A significant amount of work exists on general rule-based extensions of OO langu
Differently from R++, such systems use OPS5 [33][63] for rules, which allow full j
semantics including negation (non-existence of objects satisfying the given constraint) in
Most systems extend C++ or Java [29][65][80][94][145]. Such systems could serv
foundations for query-based debugger implementations, though currently they are not u
debugging. However, rule-based extensions of object-oriented languages significantly
from query-based debugging. Most of these systems do not handle method invocations i
Only some of them, like RAL/C [65] and OPSJ [145] do allow method invocations. M
implementations are based on source code instrumentation. These systems also
prescribed programming styles or necessitate writing interface code. For example, ILO
RETE++ generate class skeletons that have to be used by programmers for their classe
preprocesses Java code and recompiles affected classes. The CLIPS compiler and ILO
require additional interface code. In ILOG, programmers have to supply and indicate me
setting and reading object fields. On the other hand, the dynamic query-based debugg
not require source code to be available; it also automatically determines change s
instruments necessary constructors and field assignments.

The systems usually implement RETE [64] rule-matching and activation algorithm o
extensions [28] and optimizations [3][55]. This algorithm does not consider different
orders. However, some other algorithms proposed in rule-based language implemen
optimize join ordering or even execute all joins in parallel [142]. Rule-based systems
employ specialized code generation for efficient rule evaluation.

Speed comparisons between the query-based debugger and rule-based language exten
difficult. Most of the rule system benchmarks focused on the number of simultane
supported rules in slowly changing rule-only programs. Such an environment is very dif
from rapidly changing object graphs in object-oriented programs. Only recent measure
[145] try to evaluate the performance of object programs extended with rules.

In addition to the research discussed in the background section (section 2), Sefika
[149][150][151][152] implemented a system allowing limited, unoptimized dynamic selec
queries about objects in the Choices operating system. The Choices visualizer shows u
instances of a given class that satisfy a certain property. The view is animated as the p
executes, however the granularity of animation has to be at a method-call level or co
Choices implementation uses internalClass objects to track all objects of all classes. The obj
80

o their
, the

ts that
ns and
namic
hey are
rom the
ges that
 value
entary,

gging

ent
rogram
d object
alizing

][34].

s. Such
t some
ideas to
ss the
rs also
ork to

 detect
 update
eserve
ws and
DMG

ent-
 allow
l [81]
AT
 Since
based
inel
classes themselves are “aware” of the visualization and provide views corresponding t
function, e.g. CPU activity shows utilization ratio. Unlike a query-based debugger
application (Choices) is specifically instrumented to allow queries.

Dynamic query-based debugging extends work on data breakpoints [180]—breakpoin
stop a program whenever an object field is assigned a certain value. Pre-/postconditio
class invariants as provided in Eiffel [132] can be thought of as language-supported dy
queries that are checked at the beginning or end of methods. Unlike dynamic queries, t
not continuously checked and they cannot access objects unreachable by references f
checked class. Dynamic queries could be used to implement class assertions for langua
do not provide them. The current implementation of dynamic queries cannot use the “old”
of a variable, as can be done in postconditions. We view the two mechanisms as complem
with queries being more suitable for program exploration as well as specific debu
problems.

Consens et al. [44][45] use the Hy+ visualization system to find errors using post-mortem ev
traces. De Pauw et al. [52] and Walker et al. [182] use program event traces to visualize p
execution patterns and event-based object relationships, such as method invocations an
creation. This work is complementary to ours because it focuses on querying and visu
runtime events while we query object relationships.

Dynamic queries are related to incremental join result recalculation in databases [26
Buneman and Clemons [34] introduced the notion of databasealerter, a program that monitors
database for changes. The authors discuss complex alerters that monitor several relation
alerters are similar to join queries in debugging. Buneman and Clemons observe tha
updates are ignorable independently of the relation contents. Our debugger uses similar
ignore updates to irrelevant domains and fields. Blakeley, Larson, and Tompa [26] discu
conditions under which a change in the database does not affect the view. The autho
propose the algorithms to incrementally update database views. We use insights of this w
implement the incremental query evaluation scheme. First, the dynamic debugger tries to
and discard irrelevant events. Second, it uses the incremental reevaluation techniques to
the query result. Stonebraker [161] proposes query (update) rewriting techniques to pr
integrity constraints in databases. Such integrity constraints are related to database vie
dynamic debugging queries. Coping with inter-object constraints in the extended O
model [24] may require methods similar to dynamic query-based debugging.

Active databases (POSTGRES, HiPAC) [21][130] include the notion of triggers (ev
condition-action triples) that are similar to the dynamic queries. Some active databases
only conditions relating to a single relation or a class in object-oriented databases. Arie
contains OPS5 style rules with optimized A-TREAT matching algorithm. The A-TRE
incorporates index based selection evaluations and space-saving join optimizations.
Ariel’s rules essentially mimic the OPS5 rule structure, comments made about rule-
programming languages apply to it as well. ADAM [54], Ode [10][71][72][126], and Sent
81

xible
triggers
e., Ode
s left

eries.
ported
 after

 are not
lements

ontain
of rule
 [20].

t the end
way of

r that
in only
object-
ons is
erhead
code

tially
uring

hen it
ation is
linked
tes an
n the
such
objects

queries
n object
[15] integrate triggers with object-oriented programs. ADAM and Sentinel establish fle
frameworks for events and rules by treating them as first-class objects. Ode associates
with object classes. However, Ode’s triggers cannot refer to objects outside of a class, i.
does not allow “join” triggers. Sentinel supports multi-class queries, but join evaluation i
to the implementor of the rules. Consequently, the join-query support is not adequate.

Ode and Sentinel allow method invocations in triggers, a feature similar to debugging qu
In addition, triggers in these systems can contain temporal relationships that are not sup
in dynamic queries. For example, the trigger can be activated if two events occur one
another. Ode’s triggers can be also set on “read” and “transaction” events. Such events
used for dynamic queries, because they do not change the system state. Finally, Ode imp
triggers by compiling the associated O++ (C++ extension) code.

Starburst [189][190][191] is a relational database system with active rules that can c
general SQL queries in their conditions. Starburst does not allow incremental evaluation
conditions, although an extension allowing incremental evaluation has been proposed
Unlike dynamic queries and most other active databases, Starburst rules are evaluated a
of operation blocks usually corresponding to transactions. Such semantics provide one
coping with the consistency problem (Section 6.2.1).

While it is difficult to evaluate the efficiency of rule matching in active databases, it is clea
they have low overhead because they are invoked infrequently. First, the events conta
certain method activations. Second, the databases change much more slowly than
oriented programs. In contrast, in query-based debugging, the cost of all reevaluati
important. I.e., an optimization that reduces the cost by even a little can save a lot of ov
if this reduction affects all reevaluations. For that reason, customized selection
significantly speeds up query reevaluations. With rapidly changing objects and ini
unknown domain selectivities, a full-fledged debugger could optimize the join ordering d
runtime. Costs and benefits of such optimization have not been evaluated.

4.9 Summary

The cause-effect gap between the time when a program error occurs and the time w
becomes apparent to the programmer makes many program errors hard to find. The situ
further complicated by the increasing use of large class libraries and complicated pointer-
data structures in modern object-oriented systems. A misdirected reference that viola
abstract relationship between objects may remain undiscovered until much later i
program’s execution. Conventional debugging methods offer only limited help in finding
errors. Data breakpoints and conditional breakpoints cannot check constraints that use
unreachable by references from the statement containing the breakpoint.

We have described a dynamic query-based debugger that allows programmers to ask
about the program state and updates query results whenever the program changes a
82

oon as

 does
nships
en the

ges in
d to

ries are
asured
 these

ers and
lection
tions.
equent.

ctor of
ryday

further

rhead.
could

s and
gging
relevant to the query, helping programmers to discover object relationship failures as s
they happen. This system combines the following novel features:

• An extension of static query-based debugging to include dynamic queries. Not only
the debugger check object relationships, but it determines exactly when these relatio
fail while the program is running. This technique closes the cause-effect gap betwe
error’s occurrence and its discovery.

• Implementation of monitoring queries. The debugger helps users to watch the chan
object configurations through the program’s lifetime. This functionality can be use
better understand program behavior.

The implementation of the query based debugger has good performance. Selection que
efficient with less than a factor of two slowdown for most queries measured. We also me
field assignment frequencies in the SPECjvm98 suite and showed that 95% of all fields in
applications are assigned less than 100,000 times per second. Using these numb
individual evaluation time estimates, our debugger performance model predicts that se
queries will have less than 43% overhead for 95% of all fields in the SPECjvm98 applica
Join queries are practical when domain sizes are small and queried field changes are infr

Good performance is achieved through a combination of two optimizations:

• Incremental query evaluation decreases query evaluation overhead by a median fa
160, greatly expanding the class of dynamic queries that are practical for eve
debugging.

• Custom code generation for selection queries produces a median speedup of 15,
improving efficiency for commonly occurring selection queries.

On-the-fly dynamic debugging has been implemented but currently suffers a high ove
Selection slowdowns range up to factor 9.5 with a median of 5.5. Further optimizations
reduce this overhead.

By combining a novel idea of query-based programming with dynamic query result update
by providing an efficient implementation, we have shown that dynamic query-based debu
is a practical debugging tool.
83

84

et

ogram
namic
onding
 from

though
n with
h a list
s and
ugger
ses of
tterns

widely
s. The
on of a

ations.
rfaces,
re asked
ries by
y other

n the
 same

t were
5 Query Analysis and Classification
“Is it just me, or does it seem to you that I g
more than my share of troubles?”

Job

“What did I do wrong?”
Lear, Rex

5.1 Introduction

Previous chapters of this dissertation motivated and proposed use of queries for pr
debugging, introduced a query model, and described implementations of static and dy
query debuggers. This section explores the breadth of object relationships and corresp
queries in software systems. By listing numerous queries applicable to the programs
different domains, this section investigates typical use of queries by programmers. Even
queries in this section were conceived solely by the author (sometimes in a discussio
other programmers), the query list covers a wide variety of domains and structures. Suc
is helpful in selecting queries for experiments, for establishing common query structure
requirements for debugger implementations. According to the requirements, different deb
features may have different implementation and optimization priorities. Furthermore, clas
similar queries from different programming domains can be summarized into query pa
that may warrant special debugger support.

Our investigation of the query catalogue suggests that query-based debugging is
applicable, and that the current query model and its implementation support most querie
research also reveals additional features that should be supported in a full implementati
debugger.

5.2 Queries in Software Systems

This section explores object relationships and related queries in a wide range of applic
The queries cover loosely defined domains, such as networks, graphical user inte
programming systems, simulations, and resource management systems. The queries we
both on real programs and as thought experiments. The author designed most que
investigating programs or system models. However, some queries were suggested b
programmers or were paraphrased from the existing testing code.

Query grouping by domain indicates that although queries do not strictly depend o
application domain, similar queries can be asked about different applications of the
domain.

A table summarizing all queries can be found at the end of the section. The queries tha
asked about Self programs are written in Self syntax. All other queries use Java syntax.
85

work

gram
 users
annels.
 avoid
arious

ed at a

stations.
hannel

 used to
s can
t:

client-

lients

se. The
n the
e done
5.2.1 Networks

The following sections illustrate query use in various network simulations and net
protocols.

5.2.1.1 Simulation of a Cellular Communication Network.

The program in this section simulates a cellular communication network [168]. The pro
was not implemented but only outlined. The main components of the network are mobile
and base stations in a cell grid. Users periodically request and release communication ch
Base stations allocate channels for users using one of the simulated protocols. To
interference, the same channel cannot be used in the neighboring cells. Additionally, v
simulated faults can occur in the network.

In this system, there are a number of interesting queries that can be either answer
breakpoint or monitored while the program is running. The query

baseStation b; channel c. b.usedChannels.contains(c)

shows the basic view of all base stations and channels that are currently used by base
This query can be answered during a breakpoint or used to visualize the station-c
assignments. The query

baseStation b1 b2; channel c.
b1.usedChannels.contains(c) && b2.usedChannels.contains(c) && b1.isNeighbor(b2)

checks whether the neighborhood cells do not use the same channel. This query can be
verify station-channel assignments while the program is running. Furthermore, querie
check whether clients and base stations have the same view on the channel assignmen

assignments a; baseStation b; channel c1 c2; client cl.
b.assignments.contains(a) && a.client == cl && a.channel == c1 &&
cl.assignedChannel == c2 && c1 != c2

This query can be used to verify the consistency of station-channel assignment with
channel assignment. To detect handling of client failures one may ask a query

client cl. cl.active && (cl.currentTime - cl.channelRequestTime > LIMIT)

that shows all clients holding channels longer than a set limit. This query would show the c
that are faulty during the program execution.

5.2.1.2 Token-Based Network

In a token-based network system, the queries would check the correctness of token u
token in a network should be unique. If there are different tokens for different groups o
network, there should be only one token per group. Enforcing these constraints can b
with the following dynamic queries.

Is there more than one token in the system?
86

ifferent

other.

 recaps

 two

orphs:

renced
Token t1 t2. t1 != t2

Is there more than one active token in the system?

Token t1 t2. t1.active && t2.active && t1 != t2

Is there more than one active token belonging to the same group? There are two d
queries that can answer this question:

Token t1 t2. t1.active && t2.active && t1.group == t2.group && t1 != t2

Group g1; Token t1 t2. t1.active && t2.active && g1.contains(t1) && g1.contains(t2) &&
t1 != t2

Does the same node have different tokens?

Node n; Token t1 t2. n.tokens.contains(t1) && n.tokens.contains(t2) && t1 != t2

Node n; Token t1 t2. t1.belongsTo(n) && t2.belongsTo(n) && t1 != t2

5.2.2 Graphical User Interfaces

Graphical user interfaces consist of numerous objects interacting with each
Consequently, they provide a rich source for query-checked constraints.

5.2.2.1 The Self Graphical User Interface

The queries about the Self user interface were discussed in section 3.2.3.1. This section
the queries. Finding all morphs directly contained in at least two morphs:

morph * a b c. (a morphs includes: b) && (c morphs includes: b) && (a != c)

Are row morphs usually embedded into column morphs or vice versa? The following
queries give insight into this question:

objectOutliner a; rowMorph b; columnMorph c. (a morphs includes: b) && (b morphs
includes: c)

objectOutliner a; columnMorph b; rowMorph c. (a morphs includes: b) && (b morphs
includes: c)

We can find object outliners that contain column morphs and the ones that contain row m

objectOutliner a; columnMorph b. (a morphs includes: b)

objectOutliner a; rowMorph b. (a morphs includes: b)

The count of tuples in the result can be used to calculate the number of outliner refe
column morphs that do not contain row morphs.

At last we find object outliners containing no morphs at all:

objectOutliner a. (a morphs size = 0)

Additional queries about morph organization into hierarchical structures:

objectOutliner a; smallEditorMorph b. (a titleEditor = b) && (b owner = a)
87

among
raphical
ce the

s) use
bjects.

an be
s, so
l user
e some

gle has

t much

bjects
d about
objectOutliner a; columnMorph b; labelMorph c.
(a morphs includes: b) && (c owner = b) && (a moduleSummary = c)

Apart from the Self GUI, queries can be asked about other GUI systems. Relationships
windows, widgets, rulers, and menu bars can be explored. For example, assume that a g
widget references its parent window, and that this parent window must in turn referen
enclosed widget. This relationship can be verified by the query

widget wid; window win.
wid.window == win &&
! win.widget_collection.contains(wid)

5.2.2.2 Graphical Object Properties

Graphical programs (user interfaces, painting, CAD, and picture manipulation program
simple graphical objects such as points, rectangles, and lines to build more complicated o
Even though low level graphical objects are simple, relationships between them c
complex. Additionally, points and lines are usually largest classes in graphical program
finding objects violating constraints by hand is not easy. For example, the Self graphica
interface may at times contain more than ten thousand points and rectangles. Here ar
queries that verify various interobject constraints.

Find a point and a rectangle, such that the point has the samex coordinate as they coordinate of
the origin of the rectangle, and the point’sx coordinate is fixed:

point a; rectangle b. (a x = b origin y) && (a x = 6)

Find a point with a certainx coordinate:

point a. a x = 256

Find a point and a rectangle with the same relationship as in the first query, but the rectan
to also have height of 1000, and there exists another rectangle of the same height:

point a; rectangle b b1. (a x = b origin y) && (b height = b1 height) && (b != b1) &&
(b1 height = 1000)

point a; rectangle b b1. (a x = b origin y) && (b height = b1 height) && (b != b1) &&
(b1 height > 1000)

Find two rectangles such that one of them has much smaller height than the other, bu
larger width:

rectangle b b1. (b height > (b1 height + 800)) && (b width < (b1 width - 900))

5.2.2.3 SPECjvm98 Ray Tracer

The ray tracing program from the SPECjvm98 benchmark suite creates 85,000 point o
and 8,000 intersection point objects while rendering a scene. Several queries can be aske
the program objects.
88

 data
orrect
nsfor-

ar only
iency
.

 each
s of
ueries
rough
ssed by
s
us data
Can az coordinate of an intersection point be negative?

IntersectPt ip. ip.Intersection.z < 0

Are there any points with coordinatex equal to 1?:

spec.benchmarks._205_raytrace.Point p. p.x == 1

Are there any points with the distance from the origin greater than 100 million?

spec.benchmarks._205_raytrace.Point p. p.farther(100000000)

Are there such points with a negativez coordinate equal to thet field of IntersectPt?

spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0

5.2.3 Programming Systems

Programming systems such as compilers and runtime libraries perform complicated
structure creations and transformations. It is important that the structures remain c
through the program’s execution because errors could get compounded by later tra
mations. In addition, runtime system errors may be difficult to detect because they appe
under certain conditions. Subtle errors may only influence the underlying system’s effic
without breaking its “correctness.” This section discusses several programming systems

5.2.3.1 Self Virtual Machine

One way to test object relationships involves using special testing code written for
application. For example, the Self virtual machine [88][89] contains over 10,000 line
testing-related C++ code. After examination of the Self VM testing code, it appears that q
could have been used to verify the VM more efficiently. Some verification code iterates th
the objects of a class checking simple properties. Such code could have been expre
queries. For example, the verification code ofByteVectorOopClass checks whether the object ha
correct length and byte array. Other testing methods check for length and sizes of vario
structures. These properties can be tested using simple queries

ByteVectorOop a. a.length() < 0

ByteVectorOop a. a.bytes() == NULL

objVectorOop a. a.length() < 0

oopsOop a. a.size() < 1

Similarly fctProxyOop is tested for

foreignOop a. a.addrs()->noOfArgs->is_smi()

Verifying that C pointers point to correct objects:

C_pointer a. a.hi->is_smi()

memOop a. a.mark()->is_mark()
89

nts are
 want

 of the
stom

ean,
d. The

in the
 Cecil

et.

fferent

h that

rs and
ers to
Queries and testing code can coexist through the query use of verification methods.

memOop a. a.verify_oop()

stringOop a. !a.is_old()

stringOop a. a != a.Memory->string_table->lookup(a.bytes(), a.length())

vFrameOop a. a.is_live() && (!a.method()->has_code())

vFrameOop a. a.is_live() && (!a.oop(a.locals())->is_smi())

An important part of answering these queries is reporting. When some of these invaria
violated, the programmer may not want to see just the resulting object collection, but may
to receive an explanatory message. To support such reporting, the full implementation
debugger should have auxiliary output facilities that integrate the result collection with cu
messages.

5.2.3.2 Understanding the Cecil Compiler

The analysis of a prototype Cecil [38] compiler written in Self by Craig Chambers, Jeff D
and David Grove is reported in section 3.2.3.2. This section summarizes the queries use
compiler can be explored by finding compiler objects corresponding to Cecil constructs
compiled Cecil program and determining common use patterns. For example, a simple
program compiled by the compiler did not have named types with instantiations:

cecil_named_type a. (a instantiations size != 0)

Also, the query below showed that only three Cecil types had subtypes:

cecil_named_type a. (a subtypes size != 0)

Query finding Cecil methods returning integers:

cecil_method a. (a resultTypeSpec printString = ‘int’)

All of these queries could be asked while the program is running to visualize the result s

Another query shows that Cecil programs can have formals with the same name in di
methods:

cecil_method a b; cecil_formal c d.
(a formals includes: c) && (b formals includes: d) && (c name = d name) && (c != d) &&
(a != b)

Finally, a query checks whether a Cecil object’s context includes a variable binding suc
the bindings’ value is the same Cecil object:

cecil_named_object a; cecil_top_context b; cecil_object_binding c.
(a defining_context = b) && (b varBindings includes: c) && (c value = a)

Queries can be used to monitor object relationships in other object-oriented compile
parsers. Monitoring relationships between tokens in the input stream may help us
understand the compiler’s error detection techniques.
90

AST)
 in the
 that

ourse.
bout the
. For
d zero

cult to

rogram

raints.
cisely
cribes
5.2.3.3 Javac Compiler

The javac Java compiler, a part of Sun’s JDK distribution builds an abstract syntax tree (
of the compiled program. Several queries about the state of the AST were discussed
introduction and section 4.1. The first query finds an AST corrupted by an operation
assigns the same expression node to the fieldright of two different parent nodes:

BinaryExpression* e1, e2. e1.right == e2.right && e1 != e2

The javac compiler also maintains a constraint that aFieldExpression object that shares the type
and the identifier name with aFieldDefinition object must reference the latter through thefield

field:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd

5.2.3.4 Decaf Compiler

The Decaf Java subset compiler was written at UCSB for an undergraduate compiler c
This compiler parses a Java program and generates executable byte code. Queries a
compiler check properties of objects corresponding to the compiled program objects
example, the following queries check whether there are identifier objects with negative an
type fields:

Id x. x.type < 0

Id x. x.type == 0

The following query checks whether the lexical analyzer finds any error tokens:

Lexer l; Token t. l.token == t && t.type == ERROR

Similar query checks whether the lexical analyzer finds any uninitialized tokens:

Lexer l; Token t. l.token == t && t.type == UNINITIALIZED

The number of tokens in a compiled program may be large, making these queries diffi
check by hand.

5.2.3.5 Jess Expert System

The expert system belonging to the SPECjvm98 benchmark suite reads in a rule-based p
and executes it. The following query finds tokens with negative sortcodes:

spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1

5.2.4 Games and Simulations

Computer games and computer simulations create webs of objects rich with const
Simulations of airline routing systems and manufacturing plants should be performed pre
to avoid costly design updates during their physical implementation. This section des
errors that can be found in simple games and more complicated simulations.
91

 a move

to find

s and

rd. This
 a query

 applets
walls
 have to

ystems
 of the
5.2.4.1 Tic-Tac-Toe

Some queries can be asked about an implementation of the tic-tac-toe game. To make
the program has to find an empty cell. The query can check whether such a cell exists:

Cell a. a.value == Empty

In certain situations, there exist moves that would win the game. A query can be used
such moves. The following query determines the winning move that would fill a column:

Cell a b c. a.value == b.value && a.x == b.x && b.x == c.x && c.value == Empty &&
a.value != Empty

Another three queries would be necessary to check for winning moves in the row
diagonals.

5.2.4.2 Chess

Chess is a game that has numerous interactions between different pieces on the boa
section checks only some positions that can occur on a virtual chessboard. For example,
can be used to find out if one side has put the other in “check”:

King k; Figure * f. f.attacks(k)

Another query can be used to check whether both rooks are in the same column:

Rook r1 r2. r1.color == r2.color && r1.x == r2.x && r1 != r2

5.2.4.3 Ideal Gas Simulation

There are several ideal gas simulation programs implemented in Self and Java. These
simulate a tank with ideal gas molecules moving in the tank and colliding with the tank
and each other. Some of the queries were discussed in section 4.2.1. All gas molecules
remain within the tank:

Molecule* m. m.x < 0 || m.x > X_RANGE || m.y < 0 || m.y > Y_RANGE

Molecules should not occupy the same position as other molecules:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius

atom a b. a.center == b center && a != b

5.2.5 Resource Management Systems

A loosely coupled collection of applications that can be called resource management s
deals with entities managing different resources. The following sections describe some
applications.
92

nd edit
ber of
dreds of
w users
scribe,

s and
 same

y

5.2.5.1 Views and Users

In this section, we consider a system in which users simultaneously subscribe, read, a
different views. One such system is the Usenet news system. As it is known, the num
views can be measured in thousands, and the number of users can reach tens and hun
thousands. A programmer trying to debug such a system needs to be able to check ho
interact with the views. For example, to visualize users and views to which the users sub
programmer may ask a query:

View v; User u. u.subscribesTo(v)

All views subscribed to or edited by at least two users are given by:

View v; User u z. u.subscribesTo(v) && z.subscribesTo(v) && u != z

View v; User u z. u.edits(v) && z.edits(v) && u != z

Are users reading different views at the same time?

View v1 v2; User u. u.reads(v1) && u.reads(v2) && v1 != v2

Do different users subscribe to multiple same views?

View v1 v2; User u z. u.subscribesTo(v1) && z.subscribesTo(v1) && u != z &&
u.subscribesTo(v2) && z.subscribesTo(v2) && v1 != v2

Are the same views edited by at least two users from the same site?

View v; User u z. u.edits(v) && z.edits(v) && u != z && u.site == z.site

Site s; View v; User u z. u.edits(v) && z.edits(v) && u != z && s.hosts(u) && s.hosts(z)

5.2.5.2 Room Scheduling System

A scheduling system of university rooms has reservation relationships between room
courses during different time slots. For example, the debugger can check whether the
group reserved two different rooms at the same time:

Room r1 r2; Group g1; Slots s1 s2. r1.slots.contains(s1) && r2.slots.contains(s2) &&
r1 != r2 && s1.time == s2.time && g.reservations.contains(s1) &&
g.reservations.contains(s2)

Room r1 r2; Slots s1 s2. r1.slots.contains(s1) && r2.slots.contains(s2) &&
r1 != r2 && s1.time == s2.time && s1.group == s2.group

5.2.5.3 Process and Resource Simulation

Find all tasks with indices less thanProcessedIndex that have not been executed by an
processes:

task t; process p. ∀p (! p.execute.contains(t)) && t.index < ProcessedIndex

This query requires extension of the query model to include a universal quantifier.
93

ueries
 to have

airline
ture

 into a
ed to

ate,

ueries
e hash
5.2.5.4 Airline Plane Routing Service

The software system discussed here is a flight reservation and plane routing system. Q
may check an assignment of a plane to a flight. For example, a query may require a plane
enough seats for all passengers and a return flight to the same airport:

Flight f f1; Plane p. f.seatsBooked < p.seatsInPlane && f.assigned(p) &&
f1.seatsBooked < p.seatsInPlane && f1.unassigned && f1.departure > f.arrival &&
f.destination == f1.startingPoint && f1.destination == f.startingPoint

Simpler queries may find tickets issued by the airline to a destination not served by the
and tickets in which flight arrival time in a multi-leg trip is later than the next flight depar
time:

Ticket t; Airline a. ! a.services(t.destination)

Ticket t. t.firstFlight.arrival > t.secondFlight.departure

5.2.6 Miscellaneous Programs

This section covers programs that did not fit into the categories above.

5.2.6.1 VLSI Layout Programs

A simple gate and path layout program coded in Smalltalk allows users connect gates
circuit and test it with various inputs. The following query checks for connections attach
both input and output of a gate.

gate a; connection b. a.output == b && a.inputs.contains(b)

The program might be intelligent enough to prohibit connecting a “true” value to an “or” g
and a “false” value to an “and” gate. The following queries check these conditions:

trueElement a; connection b; orGate c. a.output == b && c.inputs.contains(b)

falseElement a; connection b; andGate c. a.output == b && c.inputs.contains(b)

5.2.6.2 Java Animator

The Java Animator applet shows a slide show of series of images stored in a collection. Q
check whether the image collection, the image duration collection, and the image nam
table have the same size:

Animator an; Vector images; Hashtable imageNames.
images.size() != imageNames.size() && an.images == images &&
an.imageNames == imageNames

Animator an. an.images.size() != an.imageNames.size()

Animator an. an.images.size() != an.durations.size()

Both image and image name collections should contain the same images:

Animator an; Image im. an.images.contains(im) && (!an.imageNames.containsKey(im))
94

oes not
 debug
ffer is

 a field

 output
 when

output
 larger
5.2.6.3 SPECjvm98 Compress

Compress is a straightforward compression and decompression implementation that d
use a lot of object-oriented programming. However, programmers still can use queries to
this program. For example, a query can find whether the output count of the output bu
negative:

spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0

spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0

These two queries check the same constraint using two different methods: comparing
against a constant and invoking a method.

Similar queries can be asked about input and output counts of aCompressor object:

spec.benchmarks._201_compress.Compressor z. z.in_count < 0

spec.benchmarks._201_compress.Compressor z. z.out_count < 0

Similar queries check for the program points where the out count is equal to zero:

spec.benchmarks._201_compress.Compressor z. z.OutCnt == 0

spec.benchmarks._201_compress.Compressor z. z.out_count == 0

Queries can check the relationships between the input count of the input buffer and the
count of the output buffer. The first query checks whether there is a point in the program
the output count is less than 100, the input count is greater than 0, and they are equal:

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0

We can also check when the output count is smaller than the input count:

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < z.InCnt

Another query finds out whether the output count of the output buffer is less than 100, the
count of the compressor is greater than 0, and the output buffer output count is ten times
than the output count of the compressor:

spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count

The following query checks when the output counts of compressor and buffer are equal:

spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1. z1.OutCnt == z.out_count
95

n using
econd
s unless
 in
is
tain the
query

se an
ecause

ugger.
 if the

ut
 current
queries
er
ctions

le arrays.
data
the Self
 need
ort.

he next

s and
n, and
5.2.7 Query Summary

Table 15 summarizes the queries posed in previous sections. Query attributes are show
letters in tables’ columns. The first column of the table contains the query string. The s
column categorizes queries as assertions or visualizations. Queries that have no result
an error occurs are calledassertion (A)queries, while the queries that have results even
correct executions are calledvisualization (V)queries. The distinction between two sets
important for the debugger implementation, because the debugger does not have to main
query result set for assertion queries. Consequently, assertion and visualization
evaluation costs may differ.

The third column indicates whether the query is aselection (S), ahash (H) join, or anested-loop
(N) join. As discussed in section 3.3, join queries are more costly to evaluate and po
optimization challenge. The query catalogue may be biased towards the join queries b
the author tried to come up with complex queries.

The special requirement column specifies requirements for the query evaluation in a deb
The requirements are grouped into four groups. Some queries can be evaluated only
debugger can execute themethods (M)of the underlying programming language. Witho
method execution, the expressiveness of the query language would be reduced. The
implementation can perform method evaluations with a user-supplied change set. Some
contain references to objectcollections (C). Though the static Self query-based debugg
allows the use of collections, the dynamic Java debugger does not currently support colle
because most collections are system classes. The Java debugger also does not hand
Thesystem class (S)support is necessary to debug applications that interact with library
structures. The Java debugger does not support debugging of system classes, while in
world there is no distinction between library and user classes. Finally, some queries
universal or existentialquantifiers (Q). The current query model does not provide such supp

The last column of the table classifies queries according to a scheme discussed in t
section.

The table provides a handy reference for queries of different domains, structure
requirements. For example, query 1 is a visualization query that uses nested-loop joi
requires method invocations and collection handling.

Query Assertion/
Visualization

Selection/Join
(Nested/Hash)

Special
requirements

Query
classification

1. baseStation b; channel c.
b.usedChannels.contains(c)

V N C, M P

2. baseStation b1 b2; channel c.
b1.usedChannels.contains(c) &&
b2.usedChannels.contains(c) &&
b1.isNeighbor(b2)

A N C, M D

Table 15:Query examples
96

3. assignments a; baseStation b; channel c1 c2;
client cl.
b.assignments.contains(a) && a.client == cl &&
a.channel == c1 && cl.assignedChannel == c2 &&
c1 != c2

A N, H C, M D, P

4. client cl. cl.active &&
(cl.currentTime - cl.channelRequestTime > LIMIT)

V S D

5. Token t1 t2. t1 != t2 A, V N D
6. Token t1 t2. t1.active && t2.active && t1 != t2 A, V N D
7. Token t1 t2. t1.active && t2.active &&

t1.group == t2.group && t1 != t2
A N, H D

8. Group g1; Token t1 t2. t1.active && t2.active &&
g1.contains(t1) && g1.contains(t2) && t1 != t2

A N M D

9. Node n; Token t1 t2. n.tokens.contains(t1) &&
n.tokens.contains(t2) && t1 != t2

A, V N C, M D

10. Node n; Token t1 t2. t1.belongsTo(n) &&
t2.belongsTo(n) && t1 != t2

A, V N M D

11. morph * a b c. (a morphs includes: b) &&
(c morphs includes: b) && (a != c)

A N C, M P

12. objectOutliner a; rowMorph b; columnMorph c.
(a morphs includes: b) && (b morphs includes: c)

V N C, M D

13. objectOutliner a; rowMorph c; columnMorph b.
(a morphs includes: b) && (b morphs includes: c)

V N C, M D

14. objectOutliner a; columnMorph b.
(a morphs includes: b)

V N C, M D

15. objectOutliner a; rowMorph b.
(a morphs includes: b)

V N C, M D

16. objectOutliner a. (a morphs size = 0) V S C, M P
17. objectOutliner a; smallEditorMorph b.

(a titleEditor = b) && (b owner = a)
V H P

18. objectOutliner a; columnMorph b; labelMorph c.
(a morphs includes: b) && (c owner = b) &&
(a moduleSummary = c)

V H, N C, M P

19. widget wid; window win. wid.window == win &&
(! win.widget_collection.contains(wid))

A H, N C, M P

20. point a; rectangle b. (a x = b origin y) && (a x = 6) V H P
21. point a. a x = 256 V S P
22. point a; rectangle b b1.

(a x = b origin y) && (b height = b1 height) &&
(b != b1) && (b1 height = 1000)

V H, N P

23. point a; rectangle b b1.
(a x = b origin y) && (b height = b1 height) &&
(b != b1) && (b1 height > 1000)

V H, N P

24. rectangle b b1. (b height > (b1 height + 800)) &&
(b width < (b1 width - 900))

V H, N P

25. IntersectPt ip. ip.Intersection.z < 0 A S P
26. spec.benchmarks._205_raytrace.Point p.

p.x == 1
A S P

Query Assertion/
Visualization

Selection/Join
(Nested/Hash)

Special
requirements

Query
classification

Table 15:Query examples
97

27. spec.benchmarks._205_raytrace.Point p.
p.farther(100000000)

A S M D

28. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip.

p.z == ip.t && p.z < 0

A H P

29. ByteVectorOop a. a.length() < 0 A S M P
30. ByteVectorOop a. a.bytes() == NULL A S M P
31. foreignOop a. a.addrs()->noOfArgs->is_smi() A S M D, P
32. C_pointer a. a.hi->is_smi() A S M D, P
33. memOop a. a.mark()->is_mark() A S M D, P
34. memOop a. a.verify_oop() A S M D
35. objVectorOop a. a.length() < 0 A S M P
36. oopsOop a. a.size() < 1 A S M P
37. stringOop a. !a.is_old() A S M D
38. stringOop a.

a != a.Memory->string_table->lookup(a.bytes(),
a.length()

A S M D

39. vFrameOop a. a.is_live() &&
(!a.method()->has_code())

A S M D

40. vFrameOop a. a.is_live() &&
(!a.oop(a.locals())->is_smi())

A S M D

41. cecil_named_type a. a instantiations size != 0 V S C D, P
42. cecil_named_type a. a subtypes size != 0 V S C D, P
43. cecil_method a.

a resultTypeSpec printString = 'int'
V S M D, P

44. cecil_method a b; cecil_formal c d.
(a formals includes: c) && (b formals includes: d)
&& (c name = d name) && (c != d) && (a != b)

V H, N C, M D, P

45. cecil_named_object a; cecil_top_context b;
cecil_object_binding c. (a defining_context = b) &&
(b varBindings includes: c) && (c value = a)

V H, N C, M D, P

46. BinaryExpression* e1, e2.
e1.right == e2.right && e1 != e2

A H, N D, P

47. FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type &&
fe.field != fd

A H, N D, P

48. Id x. x.type < 0 A S P
49. Id x. x.type == 0 V S P
50. Lexer l; Token t. l.token == t && t.type == 27 A H D
51. Lexer l; Token t. l.token == t && t.type == 0 V H D
52. spec.benchmarks._202_jess.jess.Token z.

z.sortcode == -1
A S P

53. Cell a. a.value == Empty V S D
54. Cell a b c. a.value == b.value && a.x == b.x &&

b.x == c.x && c.value == Empty &&
a.value != Empty

V H, N D

Query Assertion/
Visualization

Selection/Join
(Nested/Hash)

Special
requirements

Query
classification

Table 15:Query examples
98

55. Rook r1 r2. r1.color == r2.color && r1.x == r2.x
&& r1 != r2

V H D

56. King k; Figure * f. f.attacks(k) V N M D
57. Molecule* m. m.x < 0 || m.x > X_RANGE ||

m.y < 0 || m.y > Y_RANGE
A S D

58. Molecule* m1 m2. m1.x == m2.x &&
m1.y == m2.y && m1 != m2

A H, N D

59. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius

A H D

60. atom a b. a.center == b.center && a != b A H D
61. View v, User u. u.subscribesTo(v) V N M D
62. View v, User u z. u.subscribesTo(v) &&

z.subscribesTo(v) && u != z
V N M D

63. View v, User u z. u.edits(v) && z.edits(v) &&
u != z

V N M D

64. View v1 v2; User u. u.reads(v1) && u.reads(v2)
&& v1 != v2

V N M D

65. View v1 v2; User u z. u.subscribesTo(v1) &&
z.subscribesTo(v1) && u != z &&
u.subscribesTo(v2) && z.subscribesTo(v2) &&
v1 != v2

V N M D

66. View v; User u z. u.edits(v) && z.edits(v) &&
u != z && u.site == z.site

V N M D

67. Site s; View v; User u z. u.edits(v) && z.edits(v) &&
u != z && s.hosts(u) && s.hosts(z)

V N M D

68. Room r1 r2; Group g1; Slots s1 s2.
r1.slots.contains(s1) && r2.slots.contains(s2) &&
r1 != r2 && s1.time == s2.time &&
g.reservations.contains(s1) &&
g.reservations.contains(s2)

V H, N M D

69. Room r1 r2; Slots s1 s2. r1.slots.contains(s1) &&
r2.slots.contains(s2) && r1 != r2 &&
s1.time == s2.time && s1.group == s2.group

V H, N M D

70. task t; process p. ∀p (! (p.execute.contains(t)) &&
t index < ProcessedIndex

A N M, Q D

71. Flight f f1; Plane p.
f.seatsBooked < p.seatsInPlane &&
f.assigned(p) &&
f1.seatsBooked < p.seatsInPlane &&
f1.unassigned && f1.departure > f.arrival &&
f.destination == f1.startingPoint &&
f1.destination == f startingPoint

V H, N M D

72. Ticket t; Airline a. ! a.services(t.destination) A N M D
73. Ticket t.

t.firstFlight.arrival > t.secondFlight.departure
A S D

74. gate a; connection b. a.output == b &&
a.inputs.contains(b)

A H, N M D

75. trueElement a; connection b; orGate c.
a.output == b && c.inputs.contains(b)

A H, N M D

Query Assertion/
Visualization

Selection/Join
(Nested/Hash)

Special
requirements

Query
classification

Table 15:Query examples
99

rogram
roups
5.3 Query Classification

The analysis of queries in the catalogue shows that queries check constraints of p
domains, abstract data structures and program objects. The following classification g

76. falseElement a; connection b; andGate c.
a.output == b && c.inputs.contains(b)

A H, N M D

77. Animator an; Vector images;
Hashtable imageNames.
images.size() != imageNames.size() &&
an.images == images &&
an.imageNames == imageNames

A H, N M, S P

78. Animator an.
an.images.size() != an.imageNames.size()

A N M P

79. Animator an.
an.images.size() != an.durations.size()

A N M P

80. Animator an; Image im. an.images.contains(im)
&& (! an.imageNames.containsKey(im))

A N M P

81. spec.benchmarks._201_compress.Output_Buffer
z. z.OutCnt < 0

A S P

82. spec.benchmarks._201_compress.Output_Buffer
 z. z.count() < 0

A S M P

83. spec.benchmarks._201_compress.Compressor
z. z.in_count < 0

A S P

84. spec.benchmarks._201_compress.Compressor
z. z.out_count < 0

A S P

85. spec.benchmarks._201_compress.Compressor
z. z.OutCnt == 0

V S P

86. spec.benchmarks._201_compress.Compressor
z. z.out_count == 0

V S P

87. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer
z1.

z1.OutCnt == z.InCnt && z1.OutCnt < 100 &&
z.InCnt > 0

A H P

88. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer
z1.

z1.OutCnt < z.InCnt

V N P

89. spec.benchmarks._201_compress.Compressor
z;
spec.benchmarks._201_compress.Output_Buffer
z1.

z1.OutCnt < 100 && z.out_count > 1 &&
z1.OutCnt / 10 > z.out_count

A N P

90. spec.benchmarks._201_compress.Compressor
z;
spec.benchmarks._201_compress.Output_Buffer
z1. z1.OutCnt == z.out_count

V H P

91. mutableString a.
(a asSlotIfFail: [abstractMirror]) isReflecteeSlots

V S M P

Query Assertion/
Visualization

Selection/Join
(Nested/Hash)

Special
requirements

Query
classification

Table 15:Query examples
100

 have
usses
ework
ide an

ules
n, they
in. In

omain
 would
ies from
art of

r that
ed at
ate’s
straint

cution
rogram

ures
 queries,
ent from
bstract
es that

fferent
iants and
rovide
ample,
or the

are
ueries
 of the

erface
es its
ot
queries according to semantic intention. Queries belonging to different groups may
different creation times during a program’s lifecycle and different goals. This section disc
the query categories indicated in the last column of Table 15 to give programmers a fram
for query creation, use, and maintenance. Differences between query classes prov
opportunity for debugger customization.

Domain specific queries (D). The queries in this class check domain specific constraints, r
and invariants. Since the constraints checked by queries belong to the problem domai
have to be satisfied independently of the program implementation of the problem doma
other words, any program implementing a certain domain has to satisfy its restrictions. D
constraints usually are identified in the program design stage, and consequently queries
be constructed at the same stage. Ideally, a debugger could automatically generate quer
the program design in a modeling language [66]. Domain queries would constitute a p
program design and would be used and verified during the program implementation.

Violation of domain specific queries indicates a design error and informs the programme
some functionality of the application domain is implemented incorrectly or not implement
all. For example, in a VLSI design program, a “true” input to an “or” gate makes the g
output permanently true. Though a naively implemented program may not check this con
and may allow such connections, such a configuration is a domain error.

Domain specific queries also include visualization queries that illustrate the program exe
at the domain level. Results of these queries are similar to the results obtained from the p
visualization systems.

Abstract data structure queries (A). Some queries check properties of abstract data struct
[11][131] such as stacks, hash tables, trees, and so on. These queries are not domain
because the data structures can hold data of any domain. These queries are also differ
the programming construct queries, because they check the constraints of well-defined a
data structures. For example, a query about a binary tree may find the number of its nod
have only one child. On the other hand, programming construct queries usually span di
data structures. Abstract data structure queries can usually be expressed as class invar
could be packaged with the class that implements an ADT. However, the queries that p
information rather than detect violations are best answered by dynamic queries. For ex
monitoring B+ trees using queries may indicate whether this data structure is efficient f
underlying problem.

Program construct queries (P). Program construct queries verify object relationships that
related to the program implementation and not directly to the problem domain. Such q
verify and visualize groups of objects that have to conform to some constraints because
lower level of program design and implementation. For example, in a graphical user int
implementation, every window object has a parent window, and this window referenc
children widgets through thewidget_collection collection (section 5.2.2). Such construct is n
101

rified.
ot form
mming
detailed
grams,
r basic
anding
lement
ration
ohibit

ntation

 and
 query-

ges of
 using

dled by
d the

 cannot
required by the domain, but it is used in the design and implementation, so it must be ve
It is also not an abstract data structure constraint because the object relationship does n
a clearly defined abstract data type. Sometimes queries have qualities of both progra
construct queries and domain queries. Program construct queries are posed during the
program design and implementation stages. Design patterns [68], when used in pro
enforce program level constraints. Similarly to the design patterns, queries having simila
structure can be summarized into query patterns (Table 16). Specifying and underst
widely used query patterns can allow developers of query-based debuggers to imp
efficient algorithms for common queries. For example, developers could use the configu
of query pattern 1 to keep track of all elements already belonging to collections and to pr
assignments of such elements to other collections. Such pattern specific impleme
techniques would make query reevaluation less expensive.

Although programming construct queries are difficult to check by conventional means
usually require specialized testing code, they can be easily checked using a dynamic
based debugger.

To summarize, classification of queries gives insight in use of queries during different sta
a project lifecycle. The identification of query patterns promises potential speed benefits
query pattern specific optimizations.

5.4 Query Analysis and Classification Conclusions

The analysis of queries presented above indicates that 73 out of 91 queries can be han
the current dynamic debugger implementation. Being aware of the query model an
debugger implementation may have precluded the author from posing more queries that

Query Description
1. collection a b; element c.

a.contains(c) && b.contains(c)
Element must belong to a single collection.

2. collection a b; element c.
a.contains(c) && ! b.contains(c)

Element must belong to both collections at
the same time.

3. collection a b. a.size != b.size Two collections must have the same size.
4. object a b. a.field == b.field && a != b Objects of a class must have unique field.
5. object a b. a.field == b && b.field2 != a Objects must mutually reference each

other.
6. object a b. a.field == b.field && b.field2 != a Object must reference another object that

has the same value in a certain field.
7. object a b c. a.field == b && b.field2 == c Monitor a chain of references usually with

selection constraints on objects. Mostly
used as a static-query program understand-
ing tool.

Table 16:Query patterns
102

andling
ctions).
ifferent
ents a

t of the
rarely
tics of
queries
ided.

ntial
cide

object
queries
tension
nces to
the

 query
 about

 so static

ips in
s from

ns has
 by the

upport
queries.
be handled by the debugger. An important area that is not supported by the prototype is h
of collections (16 queries) and system classes (1 query, not counting system class colle
System class instrumentation can be done by using a load-time adaptation method d
from class-loader based instrumentation (section 4.3.6.2). Handling of collections pres
more complicated challenge discussed in section 6.

Though 57 out of 91 queries are join queries, this observation may be biased by the effor
author to come up with complicated queries. Another observation is that the queries
involve more than one or two joins. Perhaps writing down and understanding the seman
more complex queries takes too much user effort. Programmers may use more complex
when query libraries are available or when programmers are comfortable with tools prov

It is unclear whether extending the query model with explicit universal and existe
quantifiers would increase the tool’s appeal. Without a field study it is difficult to de
whether programmers would understand and use such quantifiers.

One more area where the tool can be easily extended is the ability to identify individual
instances and use them as singleton domains. This would allow programmers to restrict
only to certain instances of classes, and would increase the tool’s efficiency. Such an ex
would be easy in an integrated debugger environment that already maps object insta
variables or in a debugging Virtual Machine. If implemented without VM modification,
object instances would need to be identified by using unique hash codes.

The query list strongly suggests that method invocation support is necessary in any
debugging tool (53 out of 91 queries contain method invocations). The same can be said
dynamic queries. Most of the queries have results that change as the program executes,
queries are not sufficient to detect error conditions.

5.5 Summary

Static and dynamic queries can be used to efficiently verify and monitor object relationsh
object-oriented programs. This section has presented queries covering a dozen program
five different domains. The classification of such queries and identification of query patter
allowed us to better understand the query classes. Most of the queries are supported
current dynamic query-based debugger. The full debugger implementation should s
system class and collection debugging because these structures are frequently used in
103

104

o

f ways.
esult
volve

verage
n the
ations
eed to

ns and
aptation
. First,
 arrays.
ods the
uld be

ng to
g out
 become

eration
ributed

queries
e set
s that
roblem
cusses
6 Future Work and Open Problems
“I didn’t come all this way to sit out the fight!”

R. Balboa

“To survive, one must be able to adapt t
changing situations.”

Tyrannosaurus Rex

The query-based debugger model and implementation can be extended in a number o
First, the query model could be extended to include projection on “columns” of the r
corresponding to the domain variables. The query model could allow computations that in
the result objects. For example, it would be useful to write queries that calculate the a
length of certain lists. Although it is possible to do this now by iterating over the tuples i
query result, integrating such functionality into the query model could make such comput
easier to express and potentially more efficient. In this way, the system would no longer n
construct and then consume the output tuples.

A second avenue for the future work is to extend the dynamic queries to handle collectio
system classes. System classes can be instrumented using a different load-time ad
method (section 4.3.6.2). Handling of collections presents a more complicated challenge
collections are usually based on arrays, and the current implementation does not handle
Second, collection interfaces are exported through accessor methods. For such meth
automatic change set determination may present problems. Third, collection support sho
coupled with individual instance identification in queries. Only some collections may belo
the debugged program while most would be a part of the library code. Without filterin
these extraneous collections, the query results may be confusing and the debugger may
inefficient.

The rest of this chapter discusses two open problems: efficient automatic change set gen
and safe query reevaluation. Section 6.2.2 also outlines the ongoing research on dist
query-based debugging.

6.1 Automatic Change Sets

Though the current debugger implementation automatically determines change sets of
without method invocations (section 4.3.3), the general problem of automatic chang
determination is not easy to solve. The first problematic area lies with method invocation
make it harder to determine which fields and objects affect the query result. The second p
is reference chains that introduce additional overhead in chain splitting. This section dis
possible solutions for both problems.
105

s is a
namic
ethods
objects
bjects
lds of

tion is
on. To
ause, in
ebugger
ne the
 know
require
ce the

m the
tween
tion as

bugger
nalysis,
ethod

query

 during
esearch
ne all
system
method

ad-
cessed.
ting the
6.1.1 Automatic Change Sets for Method Invocations

Automatically determining a change set of the query when the query invokes method
difficult problem. To determine a change set, the system needs to perform a static or dy
analysis of method invocations and field accesses. Such analyses would find the m
invoked during the query evaluation and objects referenced by these methods. These
belong to the change set. The conservative starting point of the analysis are all o
transitively reachable through the fields of the domain class, and through all static fie
classes in the system. The analysis attempts to reduce this set.

The result of a static analysis that determines the methods involved in a query evalua
equivalent to a static program slice [185] at the end of the query expression evaluati
determine methods invoked, the system needs to use a type inference algorithm [6] bec
dynamically dispatched languages, a target method depends on the receiver type. The d
already knows types of domain objects and their fields, allowing the system to determi
first methods invoked. If an ideal type inference engine were available, the system would
exactly which methods are called. Unfortunately, even the best type-inference methods
large amounts of memory, are relatively slow, and may not be precise enough to redu
change set into an efficient size for monitoring purposes.

The second part of the static analysis would extract objects and fields accessed fro
executed methods and so would determine which objects to monitor. The relationship be
these objects and concrete instances of the domain class would need further identifica
discussed in section 6.1.2.

The system could also find change sets by using dynamic analysis. In this case, the de
would determine a change set at the time when a query is evaluated. Unlike the static a
no type inference algorithm would be needed, since the system would wait to detect m
invocations until runtime. However, the system would incur a runtime overhead with each
reevaluation.

The dynamic analysis determines the query change set by marking all objects accessed
the evaluation. The marking can be done using a number of techniques proposed in the r
on data breakpoints and on software fault isolation [108][180][181]. One way to determi
objects in the change set is to track all method calls. When a method is invoked, the
would mark the receiver object. This technique may be too expensive because each
invocation would need to be tracked. It can be improved by using code patching.

Another technique is avirtual memory approach. In this case all objects are placed in a re
protected area. Control is transferred to the debugger each time one of the objects is ac
Then the object is marked and moved to an unprotected area. For example, while evalua
query:

Ticket t; Airline a. ! a.services(t.destination)
106

y
ieve a
le, if a
 change
.

t
fore the
s of an

tch code
ected
truction
ge faults
rying to

cuted

bove.

of the
hem and
rformed
mically
oaches
.

others
% of
 down

ugger
aluated

ber of
ld have
marked

 sets for
the system would accessAirline objects,AirlineDestinations objects and so on. The virtual memor
method would be faster if an efficient read trap were available. It may be possible to ach
greater efficiency by increasing the granularity of the change set detection. For examp
read-protected page is accessed, the system could mark all objects in it as belonging to a
set. However, this approach increases the overhead of monitoring falsely shared objects

A variation of this method is Keppel’spatch-on-trap method [108]. When a trap is hit the firs
time, the system not only deals with the object access but also inserts patch code be
memory access instruction. This patch code contains instructions that check the addres
object being accessed. When this memory access instruction is executed again, the pa
is invoked before the instruction itself. If the instruction would access an object in the prot
page, the patch code marks and moves this object without causing a trap. Then the ins
can access the moved object without a trap. This technique decreases the number of pa
to one page fault per memory access instruction. This approach also saves time spent t
find and patch memory access instructions if the system were to use pure patching.

A system using pure code patching technique would dynamically patch all code exe
during the query evaluation. For example, memory access instructions in the methodservices()

would be patched when this method is invoked during the evaluation of the airline query a

Dynamic analysis solves the issue of identifying methods called in the constraint part
query because the system either patches the methods when they are called or ignores t
marks objects that generate read exceptions. However, dynamic analysis needs to be pe
at each query reevaluation because a change in some object may change the dyna
determined change set. Furthermore, virtual-memory and code patching based appr
would require Java Virtual Machine modifications, something that we would like to avoid

Dynamic analysis could potentially be done with an acceptable efficiency. Wahbe and
[181] have shown that the software fault isolation (both read and write) costs only 22
execution speed. Efficient data breakpoints implemented by the same authors [180] slow
the execution about 30%. The slowdown should not be significantly larger in a deb
implementation. On the negative side, dynamic analysis has to be done for each tuple ev
during the query execution. It would be preferable to use methods that depend on the num
domain objects but not on the number of tuples. Techniques used in the system shou
lower penalty for accesses to already marked objects than the penalty for accesses to un
objects.

To summarize, though static and dynamic analyses could be used to determine change
method invocations, the viability of these approaches still needs to be investigated.
107

ethod
rence

es with

al
.

adding
n as:

es, the
t two

licated
ckward

ge-set

ject was
orward
may be
ange set
y exist
ve to be

oposes
gger to
6.1.2 Reference Chains

Although reference chains appear in queries directly, the change sets of queries with m
invocations are even more likely to contain reference chains. Efficient handling of refe
chains is important for good debugger performance on complicated queries.

Section 4.3.3 shows the use of reference chain splitting to handle change sets of queri
reference chains:

IntersectPt ip. ip.Intersection.z < 0

The Intersection field is aPoint object, and the query result depends on itsz value. The query
result may change if thez value changes, or if a new value is assigned to theIntersection field.
Furthermore, thePoint object referenced by theIntersection field may be shared among sever
domain objects. In this case, a change in onePoint object can affect multiple domain objects
Our debugger rewrites the query by splitting the chain into single-level accesses and by
additional domains and constraints. For example, the ray tracing query above is rewritte

IntersectPt ip; Point* __Intersection.
ip.Intersection == __Intersection && __Intersection.z < 0

Another approach to handle change sets of such queries would be to keepbackward references
from the change set objects to the domain objects. When a change set object chang
debugger is informed which domain objects were affected by the event. Assume tha
IntersectPt objects share the samepoint object through theIntersection field. When thez

coordinate of this point is changed, the debugger would be informed which twoIntersectPt

objects are affected. However, keeping and maintaining backward references is a comp
and potentially expensive task. Future research could calculate the overhead of ba
references and their contribution to the efficient query evaluation.

Alternatively, the system could keep references from each domain object to the chan
objects affecting this domain object. These references are calledforward references. If forward
references are used, after an event occurs, the debugger would find whether a domain ob
affected by traversing these references. If objects changed during the event are in the f
reference set of some object, this domain object is affected by changes. This approach
slower than using backward references but it may consume less memory, because the ch
is usually referenced by the fields of the domain object. Such (forward) references alread
in the program and do not need to be stored separately, while backward references ha
stored explicitly.

6.2 Safe Reevaluation and Distributed Debugging

The problem of safe query evaluation was discussed in section 3.2.1. This section pr
some ways to deal with a problem and introduces an extension of the query-based debu
the distributed setting.
108

ld be
ression
 points
the list,
rogram

st, it
y

sistent

ion is
 with
level

ay to
d then
ld be

n” after
sistent
6.2.1 Safe Reevaluation

Section 3.2.1 outlined the problem of safe evaluation. To recap, the queries shou
reevaluated only when queried objects are in consistent states. In other words, the exp
evaluation should succeed and provide meaningful results. At some program execution
the query evaluation may be unsafe. For example, during an insertion of an element into
the list may have an inconsistent state. In Figure 32, if the query is asked just after the p
updates thenext reference of theOldNode but before it sets thenext reference of theNewNode
to point to theTailNode, the query evaluation will be unsafe. If the debugger traverses a li
may crash because the referenceNewNode.next is null or it may produce an incorrect output b
using a shorter list that does not contain theTailNode.

Therefore, query results can be updated only when all abstractions involved are in a con
state. What are the consistent states? The program state isinconsistent with respect to a query,
if either the underlying program objects are inconsistent, or if the design-level abstract
temporarily broken. The list example shows the situation where the inconsistency lies
program objects. The following gas tank query illustrates a temporary design-
inconsistency:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

This query finds molecule objects that erroneously occupy the same position. One w
preserve this constraint in a program is to check whether molecules have collided an
adjust the molecule coordinates to reflect the collision. However, such a solution wou
perceived incorrect by the debugger, because the molecules “occupy the same positio
the collision and before the fix. The debugger should not evaluate the query in this incon
region.

Figure 32. Inconsistent list state

Node

next

OldNode

next

NewNode

next

TailNode

next

Node

next

OldNode

next

TailNode

next

Original list

List insertion
109

ystem
ate this
st’s state
rating
tate—
, if the
e swap
ay be

uery
nately,
 its time
sult of
thods
bjects
ncies.
ellular
n users
off the
signed
Consider another scenario—recursive sorting of a list by deletion and insertion. The s
needs to reevaluate a query involving the list being sorted. The system cannot reevalu
query as soon as the execution leaves the method that changed the list, because the li
may still be inconsistent at this point. Other operations on the list or operations on coope
objects that are on the execution stack may still be in the process of modifying the list’s s
even though the list link update is finished, the list may still be unconnected. For example
list class uses the swap method to change places of two elements, the first part of th
method may just move one of the elements to its new place (Figure 33). The list m
inconsistent until the second part of swap finishes.

To avoid inconsistency at the program level, the debugger could wait with the q
reevaluation until there are no domain object operations on the execution stack. Unfortu
this approach may cause a long delay. In the list sorting example, the program spends all
in the list code, making the debugger wait until the end of the execution to update the re
the query. This is clearly unacceptable. Even if the debugger waited until all domain me
were off the execution stack, the consistency could still be violated at the logical level. O
cooperating with the domain objects (multi-object transactions) could create inconsiste
For example, in a cellular network simulation (section 5.2.1.1), when a user contacts a c
base station, the simulation program needs to update both the list of cellular base-statio
and the list of the assigned channels. If the debugger waits only until the list of users is
execution stack, the query reevaluation will violate the transaction, because the list of as

Figure 33. Inconsistent intermediate list state

Node 6

next

Node 1

next

Node 5

next

Node 7

next

List after the first part of the swap

Node 6

next

Node 1

next

Node 5

next

Node 7

next

List after the swap

Node 2

next
110

al with

y hide
fficult
clusion
matic
ol over
rovide

uch a
e rest of
tively
rs have
 a guard
ave no
 natural

am text.
am and
would
able in
.

o solve
ering a
ed)

 rules
niques

help
tand
. First,
ve to be
 would
ject is
uted
mmit

based
channels is not yet updated. These scenarios show that simple strategies cannot de
complex consistency situations.

Another problem of dealing with inconsistent regions is that some of these regions ma
genuine errors. Prohibiting query execution from a part of the runtime makes it more di
for programmers to understand the query and the program. Consequently, such region ex
should probably be left to a strict supervision of programmers, especially since auto
determination of inconsistent states is probably impossible. One way to give users contr
excluding inconsistent regions is to use guarded queries. With each query users would p
a “when” or “while” clause that could be consistently evaluated at any time. To provide s
guarantee, the guard clause has to be a simple expression involving simple methods. Th
the query is evaluated only when (or while) the guard is true. Guards allow to declara
specify program regions where the query reevaluation is safe. Even though programme
to spend time writing guards, such programmer assistance seems to be reasonable when
is available or easy to construct. For example, the cellular network base station should h
active channels when it has no active users. Checking the size of the user list would be a
guard for queries involving the empty list.

Guards in general are as powerful as direct commands to reevaluate a query in the progr
Such a command can be simulated using a guard by adding a flag variable to the progr
setting this flag in the place where a command would have been invoked. The guard
check the flag and perform a query reevaluation when the flag is set. If guards are avail
the system, users can force query reevaluation at any moment of the program execution

In addition to the transactional model, active database systems apply different methods t
the safe reevaluation problem. Most databases use a direct command method for trigg
condition in the ECA (event-condition-action) model. Ariel [81] contains atomic (guard
regions where rules should not be fired. Similarly, Starburst [189][190][191] reevaluates
only at the end of operation blocks usually corresponding to transactions. These tech
correspond to the safe evaluation methods proposed above.

6.2.2 Distributed Query-Based Debugging

The implementation of query-based debugging for distributed systems would
programmers to debug distributed applications well known for their difficult-to-unders
semantics. However, such an implementation would have to deal with several problems
the domain objects have to be collected from distributed nodes. Second, these objects ha
in a consistent state. Methods for achieving consistency discussed in the previous section
have to be adapted to the distributed setting. A distributed query-based debugging pro
currently under way at UCSB [114]. The debugger will be implemented on the Kan distrib
object system [100]. Consistent reevaluation points will correspond to the transaction co
points and to the entry/exit points of user indicated methods. Work on distributed query-
111

 data

s such
em of
debugging could build on the research describing efficient view updates in distributed
warehouses [8][197].

Another aspect of distributed debugging would be dealing with shared multi-user space
as Kansas [157]. Debugging in such spaces would have to deal both with the probl
distributed environment and with the problems of user separation and interaction.
112

s

ou

ct gap
t to the

ted by
ures in
ionship

ost
vide

tional
om the

program
urrent

based
om a
mber

or all
nd and

drange
uery
ns of
.

7 Conclusions
“By persevering over all obstacles and
distractions, one may unfailingly arrive at hi
chosen goal or destination.”

C. Columbus

“Just because something doesn’t do what y
planned it to do doesn’t mean it’s useless.”

T. Edison

Understanding and debugging complex software systems is difficult. The cause-effe
between the time when a program error occurs and the time when it becomes apparen
programmer makes many program errors hard to find. This situation is further complica
the increasing use of large class libraries and complicated reference-linked data struct
modern object-oriented systems. A misdirected reference that violates an abstract relat
between objects may remain undiscovered until much later in the program’s execution.

Conventional debugging methods offer only limited help in finding such errors. M
conventional debuggers offer only a limited low-level view of the program state and pro
little support for the exploration of large data structures. Data breakpoints and condi
breakpoints cannot check constraints that have objects unreachable by references fr
statement containing the breakpoint.

The research in this dissertation proposes a system that allows to ask queries about the
state, helping to check object relationships in large object-oriented programs. The c
implementation of the query-based debugger1 combines several novel features:

• A new approach to debugging: Instead of exploring a single object at a time, a query-
debugger allows the programmer to quickly extract a set of interesting objects fr
potentially very large number of objects, or to check a certain property for a large nu
of objects with a single query.

• A flexible query model: Conceptually, a query evaluates its constraint expression f
members of the query’s domain variables. The present model is simple to understa
to learn, yet it allows a large range of queries to be formulated concisely.

• Good performance: Many queries are answered in one or two seconds on a mi
workstation, thanks to a combination of fast object searching primitives, q
optimization, and incremental delivery of results. Even for longer queries that take te
seconds to produce all results, the first result is often available within a few seconds

1 Available from the author as a prototype implementation in Java.
113

e query
r object
tures:

mines
es the

ges in
d to

lection
sured.
at 95%
g these
redicts
jvm98
hanges
tion

rhead.
could

est for
ased
ficiently.
different
rs will

the
An extension of the static query-based debugger handles dynamic queries that updat
results whenever the program changes an object relevant to the query, helping to discove
relationship failures as soon as they happen. This system provides the following new fea

• Dynamic queries: Not only does the debugger check object relationships, but it deter
exactly when these relationships fail in the program execution. This technique clos
cause-effect gap between error’s occurrence and its discovery.

• Implementation of monitoring queries: the debugger helps users to watch the chan
object configurations through the program’s lifetime. This functionality can be use
understand the program behavior.

The implementation of the dynamic query-based debugger has good performance. Se
queries are efficient, with a slowdown smaller than a factor of two for most queries mea
We also measured field assignment frequencies in the SPECjvm98 suite, and showed th
of all fields in these applications are assigned less than 100,000 times per second. Usin
numbers and individual evaluation time estimates, our debugger performance model p
that selection queries will have less than 43% overhead for 95% of all fields in the SPEC
applications. Join queries are practical when domain sizes are small and queried field c
are infrequent. Additional optimizations of join queries could possibly improve their evalua
efficiency.

On-the-fly dynamic debugging has been implemented but currently suffers a high ove
Selection slowdowns range up to factor 9.5 with a median of 5.5. Further optimizations
reduce this overhead.

We believe that query-based debugging adds a powerful tool to the programmer’s tool ch
tackling the complex task of debugging. Our implementation of the dynamic query-b
debugger demonstrates that dynamic queries can be expressed simply and evaluated ef
The debugger implementations in Self and Java show that the system can be adapted to
programming languages and environments. We hope that future mainstream debugge
integrate similar functionality, simplifying the difficult task of debugging and facilitating
development of more robust object-oriented systems.
114

y

vent-

 the
, and

at is

 by

ery.

 into

e

the

hout
.2.2.

ion.

s a

at
r with
8 Glossary
“It’s useless to try to plan for the unexpected... b
definition!”

A. Hitchcock

“It all hinges on your definition of ‘a good
time’!”

L. Borgia

Active database. A database that can change reacting to events. Usually with e
condition-action rules. Section 4.8.

Assertion. A conditional expression that is claimed to be true at some time during
program’s execution. Includes class and method preconditions, postconditions
invariants. Section 2.1.3.

Backward reference. A reference from a change-set object to a domain object th
affected by changes of this change-set object. Seeforward reference. Section 6.1.2.

Bytecode. An instruction in the intermediate format, in particular, the format used
Java Virtual Machine. Section 4.3.2.

Change set. A set of objects and their fields that can affect the result of a qu
Section 4.3.3.

Class file. An intermediate format file containing a Java class description compiled
bytecodes. Section 4.3.2.

Class loader. A program that controls the class loading process. Section 4.3.2.

Code generation (load-time or runtime). Producing a runnable code during th
program’s load-time or runtime. Section 4.3.5.2.

Conditional breakpoint. A breakpoint that stops a program when a condition at
breakpoint insertion point evaluates to true. Section 2.1.2.

Consistent state. A program execution state at which a query can be executed wit
crashing the program and without producing logically incorrect results. Section 3

Constraint. An object relationship that holds for a (part of a) program execut
Section 2.

Data breakpoint. A breakpoint that stops a program when the program modifie
selected variable. Section 2.3.1.

Debugger invocation frequency. The frequency of events in the original program th
would trigger a debugger invocation, i.e., the invocation frequency for a debugge
no overhead. Section 4.4.1.
115

ss.

See

ogram

of an
jects

n be

oop.

ng,

 in

.2.

 of a

ctor

cuted

1.

ate

e.
Domain. A collection of objects on which a query is evaluated. Typically a cla
Section 3.2.

Dynamic query. A query that is answered while a program is running. Section 4.

Forward reference. A reference from a domain object to its change-set object.
backward reference. Section 6.1.2.

Guard. A simple expression that can be evaluated and is consistent at every pr
execution point. Used to determineconsistent states of a query. Section 6.2.1.

Hash join. A join performed by hashing objects corresponding to a left-hand side
equality constraint into a hash table, and retrieving matches by using ob
corresponding to a right-hand side of a constraint. Section 3.3.6.

Instrumentation . Changing the source or the intermediate code of a program. Ca
done to add debugger or profiler invocations. Section 4.3.2.

Invariant . A constraint that is correct at every execution of class, method, or l
Section 2.1.3.

Java Virtual Machine (JVM) . SeeVirtual Machine .

Join query. A query with more than one variable. Section 3.2.

Load-time adaptation (LTA) . A program change at load-time. Used for debuggi
profiling, program behavior extension. Section 4.3.6.1.

Nested-loop join. A join performed by checking all combinations of domain tuples
a nested loop. Section 3.3.4.

Query. A question about program structure satisfying the query model. Section 3

Safety (of query evaluation). Evaluation of queries atconsistent states. Section 3.2.2.

Selection query. A query with a single variable. Section 3.2.

Slicing. Finding a subset of program statements—a slice—that affects the value
certain variable or the current statement of the program. Section 2.3.2.

Soft (weak) references. References that are not considered by the garbage colle
when deciding whether an object is alive. Section 4.3.4.

Static query. A query that is answered at a program breakpoint. Section 3.

Transaction. An atomic group of statements that are either all executed or not exe
at all. Section 6.2.1.

Transient failures. Failures that disappear after some period of time. Section 4.2.

Virtual Machine (VM) . Runtime system for running programs in an intermedi
format understood by the virtual machine. Section 4.3.

Visualization. On-screen display of program information usually changing in tim
Section 2.4.
116

s”

age-
ing

Java
tems,

ta
ent

nd the

s

em at
al
9 References
“Old heroes never die; they reappear in sequel

M. Moorcock

[1] Abiteboul, S., Hull, R., Vianu, V.,Foundations of Databases, Addison-Wesley, 1995.

[2] Abiteboul, S.; Kanellakis, P.C., Object identity as a query language primitive. 1989ACM
SIGMOD International Conference on Management of Data, Portland, OR, USA, 31 May-2
June 1989).SIGMOD Record, vol.18, (no.2), pp. 159-73, June 1989.

[3] Acharya, A., Scalability in Production System Programs,Ph.D. Thesis, Computer Science
Department, Carnegie Mellon University, November 1994.

[4] Adl-Tabatabai, A.-R., Langdale G., Lucco S., and Wahbe R., Efficient and Langu
Independent Mobile Programs,Proceedings of ACM SIGPLAN conference on Programm
Language Design and Implementation 1996, Philadelphia, May 1996. Published asACM
SIGPLAN Notices, vol. 31, (no.5), pp. 127–136, May 1996.

[5] Agesen, O., Bak, L., Chambers, C., et al.The Self 4.0 Programmer’s Reference Manual.

[6] Agesen, O., Concrete Type Inference: Delivering Object-Oriented Applications.Ph.D. Thesis,
Stanford University 1995.

[7] Agesen, O., Freund, S.N., and Mitchell, J.C. Adding Type Parameterization to the
Language.Proceedings of the ACM Conference on Object-Oriented Programming, Sys
Languages and Applications OOPSLA’97, Published asSIGPLAN Notices 32(10), pp. 304-
317, Atlanta, GA, October 1997.

[8] Agrawal, D., El Abbadi, A., Singh, A.K., Yurek, T., Efficient View Maintenance at Da
Warehouses,Proceedings of 1997 ACM SIGMOD International Conference on Managem
of Data, SIGMOD Record, pp. 417–427, 1997.

[9] Agrawal, H., Horgan, J.R., Dynamic Program Slicing,ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI’90, White Plains, N.Y., pp. 246–
256, June 1990.

[10] Agrawal, R., Gehani, N.H., ODE (Object Database and Environment): The Language a
Data Model,Proc. ACM-SIGMOD 1989 Int’l Conf. Management of Data, pages 36-45, May
1989.

[11] Aho, A.V., Hopcroft, J.E., Ullman, J.D.The Design and Analysis of Computer Algorithm.
Addison-Wesley 1974.

[12] Aho, A.V., Sethi R., Ullman J.D.,Compilers: Principles, Techniques and Tools, Addison-
Wesley Publishing Company, 1986.

[13] Alexandrov, A., Ibel, M., Schauser, K., and Scheiman, C. Extending the Operating Syst
the User Level: the Ufo Global File System.Proceedings of the USENIX 1997 Technic
Conference, January 1997.

[14] Anderson E., Dynamic Visualization of Object Programs written in C++,Objective Software
Technology Ltd., http://www.objectivesoft.com/, 1995.
117

ject-
on

dings
1988.

tive
tems,
er

er

in a

cts,

nts:

s.

stem
ry
[15] Anwar, E., Maugis, L., Chakravarthy, S., A New Perspective on Rule Support for Ob
Oriented Databases,Proceedings of 1993 ACM SIGMOD International Conference
Management of Data, Washington, DC, USA, May 26–28, 1993.SIGMOD Record, vol.22,
(no.2), pp. 99–108, May 1993.

[16] Arnold, K., Gosling, J.,The Java Programming Language, Addison-Wesley Pub. Co., 1996.

[17] Asprin R., The Myth-ing Books:Another Fine Myth, Myth Conceptions, Hit or Myth, Myth-ing
Persons, Little Myth Marker, M.Y.T.H. Inc. Link, Myth-nomers and Im-pervections, Myth
Directions, M.Y.T.H. Inc. in Action, Sweet Myth-tery of Life, Ace Books, 1978–1998.

[18] Baecker, R., DiGiano, C., Marcus, A., Software Visualization for Debugging,Communications
of the ACM, Vol. 40., No. 4, pp. 44–55, April 1997.

[19] Banerjee, J.; Kim, W.; Kim, K.-C., Queries in object-oriented databases. In: Procee
Fourth International Conference on Data Engineering, Los Angeles, CA, USA, 1-5 Feb.
Washington, DC, USA: IEEE Comput. Soc. Press, pp. 31-8, 1988.

[20] Baralis E., and Widom, J., Using Delta Relations to Optimize Condition Evaluation in Ac
Databases.Proceedings of the Second International Workshop on Rules in Database Sys
Lecture Notes in Computer Science 985, pp. 292–308, Springer-Verlag, Berlin, Septemb
1995.

[21] Beeri, C., Milo, T., A Model for Active Object-Oriented Database, Proceedings of the 17th
International Conference on Very Large Data Bases, Barcelona, pages 337–349, Septemb
1991.

[22] Beguelin, A., Dongarra, J., Geist, A., Sunderam V., Visualization and Debugging
Heterogeneous Environment,IEEE Computer 26(6), pp. 88–96, June 1993.

[23] Berk E.,JLex: A Lexical Analyzer Generator for JavaTM, version 1.2.3,
http://www.cs.princeton.edu/~appel/modern/java/JLex/ , 1996.

[24] Bertino, E., Guerrini, G., Extending the ODMG Object Model with Composite Obje
Proceedings of OOPSLA’98, pp. 259-270, Vancouver, October 1998. Published asSIGPLAN
Notices 33(10), October 1998.

[25] Bischofberger, W. R., Kofler, T., Schäffer, B., Object-Oriented Programming Environme
Requirements and Approaches,Software—Concepts and Tools, Vol. 15, No. 2, Springer-
Verlag, 1994

[26] Blakeley, J.A.; Larson P.-A.; Tompa F. Wm.; Efficiently Updating Materialized View
Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 61-71,
Washington, D.C., USA, May 1986. Published asSIGMOD Record 15(2), June 1986.

[27] Bourdoncle, F. Abstract Debugging of Higher-Order Imperative Languages.ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI’93, Albuquerque,
N.M., pp. 46–55, June 1993.

[28] Brant, D.A., Grose, T., Lofaso, B., Miranker, D.P., Effects of Database Size on Rule Sy
Performance: Five Case Studies,Proceedings of the 17th International Conference on Ve
Large Data Bases (VLDB), Barcelona, Spain, pp. 287–296, September 1991.

[29] BrightWare,ART*Enterprise, http://www.brightware.com/products/art.html, 1999.

[30] Bronnikov, D.,Java 1.1 grammar, version 1.03,
http://home.inreach.com/bronikov/grammars/java.html , November 1997.
118

n

ling.
 for
,

,

ped

.

nal
uting

sed

Trees
y
erlag,

OIE.

 by
l
tes in

res,
,

[31] Brown, M.H., Exploring Algorithms Using Balsa-II,IEEE Computer 21(5), pp. 14-36, May
1988.

[32] Brown, M.H., Zeus: A System for Algorithm Animation and Multi-View Editing,Proceedings
of IEEE Workshop Visual Languages, pp. 4-9, IEEE CS Press, Los Alamitos, CA., 1991.

[33] Brownston, L., Farrell, R., Kant, E., Martin, N.,Programming Expert Systems in OPS5: A
Introduction to Rule-Based Programming, Addison-Wesley, Reading, MA, 1985.

[34] Buneman, O.P.; Clemons E.K., Efficiently Monitoring Relational Databases.ACM
Transactions on Database Systems,4(3), pp. 368-382, September 1979.

[35] Cardelli L., Wegner P., On Understanding Types, Data Abstraction, and Polymorphism,ACM
Computing Surveys, Vol. 17, No. 4, pp. 471-522, December 1985.

[36] Cargill, T.A; Locanthi, B.N.; Cheap Hardware Support for Software Debugging and Profi
Proceedings of the Second International Conference on Architectural Support
Programming Languages and Operating Systems, Palo Alto, CA, October 1987. pp. 82–83
ACM Press 1987.

[37] Cattell, R.G.G., edited by,The Object Database Standard: ODMG-93, Release 1.2, Morgan
Kaufmann Publishers, Inc., San Francisco, CA, 1996.

[38] Chambers. C.Cecil language: specification and rationale. UW-CS Technical Report 93-03-05
1993.

[39] Chambers, C., Ungar, D., Lee, E., An Efficient Implementation of SELF a Dynamically-Ty
Object-Oriented Language Based on Prototypes, InProceedings of OOPSLA’89, pp. 49-70,
New Orleans, LA, October 1989. Published as SIGPLAN Notices 24(10), October 1989

[40] Chandra, A.K., Merlin P.M., Optimal Implementation of Conjunctive Queries in Relatio
Data Bases,Conference Record of the Ninth Annual ACM Symposium on Theory of Comp,
Boulder, Colorado, May 1977, pp 77–90, 1977.

[41] Chang, B.-W., Ungar, D., Smith, R. B., Getting Close to Objects: Object-Focu
Programming Environments,Visual Object Oriented Programming, Burnett, M., Goldberg, A.,
Lewis, T., eds., Prentice-Hall, 1995, pp. 185-198.

[42] Cluet S., Moerkotte G., On the Complexity of Generating Optimal Left-Deep Processing
with Cross Products,Proceedings of the 5th International Conference on Database Theor,
Prague, Czech Republic, volume 893 of Lecture Notes in Computer Science, Springer-V
pp. 54-67, January 1995.

[43] Cohen, G.A., Chase, J.S., and Kaminsky, D.L. Automatic Program Transformation with J
Proceedings of the 1998 USENIX Annual Technical Symposium. 1998.

[44] Consens, M. P., Hasan M.Z., Mendelzon A.O., Debugging Distributed Programs
Visualizing and Querying Event Traces,Applications of Databases, First Internationa
Conference, ADB-94, Vadstena, Sweden, June 21-23, 1994, Proceedings in Lecture No
Computer Science, Vol. 819, Springer, 1994.

[45] Consens, M.; Mendelzon, A.; Ryman, A., Visualizing and querying software structu
International Conference on Software Engineering, Melbourne, Australia, May 11-15, 1992
ACM Press, IEEE Computer Science, p. 138-156, 1992.
119

,

nt

are -

ect-
ted

. In:
P ‘94
rlin,

nted
ted
n,

D.,

iform
ses

ge

ool:
[46] Coplien, J.O., Supporting truly object-oriented debugging of C++ programs., In:Proceedings
of the 1994 USENIX C++ Conference, Cambridge, MA, USA, 11-14 April 1994. pp. 99-108
Berkley, CA, USA: USENIX Assoc, 1994.

[47] Cox, K. C.; Roman G.-C.;Experiences with the Pavane Program Visualization Environme,
Technical Report, WUCS-92-40, October 1992.

[48] Dahl, O., and Nygaard, K., Simula: An Algol-based simulation language.Communications of
the ACM, 9(9), pp. 671–678, September 1966.

[49] Detlefs D., Dosser A., Memory Allocation Costs in Large C and C++ Programs, Softw
Practice and Experience, Vol. 24 (6), June 1994, pp. 524 - 542.

[50] De Pauw, W.; Helm, R.; Kimelman, D.; Vlissides, J. Visualizing the behavior of obj
oriented systems. InProceedings of the 8th Annual ACM Conference on Object-Orien
Programming Systems, Languages, and Applications, OOPSLA 1993, Washington, DC, USA,
26 Sept.-1 Oct. 1993. SIGPLAN Notices, Oct. 1993, vol.28, (no.10):326-37.

[51] De Pauw, W.; Kimelman, D.; Vlissides, J. Modeling object-oriented program execution
Proceedings of the 8th European Conference on Object-Oriented Programming, ECOO,
Bologna, Italy, 4-8 July 1994. pp. 163-82, Edited by: Tokoro, M.; Pareschi, R. Be
Germany: Springer-Verlag, 1994.

[52] De Pauw, W.; Lorenz, D.; Vlissides, J.; Wegman, M. Execution patterns in object-orie
visualization. Proceedings of the Fourth USENIX Conference on Object-Orien
Technologies and Systems, Sante Fe, NM, USA, 27-30 April 1998, USENIX Associatio
1998. pp.219-34.

[53] De Witt, D..J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood
Implementation techniques for main memory database systems,Proceedings of 1984 ACM
SIGMOD International Conference on Management of Data, pp. 1–8, May 1984.

[54] Diaz, O., Paton, N., Gray, P., Rule Management in Object-Oriented Databases: A Un
Approach, Proceedings of the 17th International Conference on Very Large Data Ba,
Barcelona, pages 317–326, September 1991.

[55] Doorenbos, R.B., Production Matching for Large Learning Systems,Ph.D. Thesis, Computer
Science Department, Carnegie Mellon University, January 1995.

[56] Duncan, A., Hölzle, U.;Adding Contracts to Java with Handshake, Technical Report TRCS98-
32, December 1998.

[57] Duncan, A., Hölzle, U.;Load-Time Adaptation: Efficient and Non-Intrusive Langua
Extension for Virtual Machines, Technical Report TRCS99-09, April 1999.

[58] Eisenstadt, M., My Hairiest Bug War Stories,Communications of the ACM, Vol. 40., No. 4, pp.
30–38, April 1997.

[59] Eisenstadt M.,Tales of Debugging from The Front Lines, Technical Report 106, Human
Cognition Research Laboratory, 1993.

[60] Eisenstadt M., Why Hypertalk Debugging Is More Painful Than It Ought To Be,in J. Alty, D.
Diaper and S.P. Guest (Eds.), People and Computers VIII. Cambridge, U.K.: Cambridge
University Press, 1993.

[61] Eisenstadt M., Price B. A., Domingue J., Software Visualization As A Pedagogical T
Redressing Some ITS Fallacies, Instructional Science, 21, pp. 335–365, 1993.
120

 the
ing

ce

hing

e

ct-

+ - a
d.

P-

ggers.

nted

e

NIX
[62] Flanagan, C., Flatt, M., Krishnamurthi, S., Weirich, S., Feilleisen, M., Catching Bugs in
Web of Program Invariants,Proceedings of ACM SIGPLAN conference on Programm
Language Design and Implementation 1996, Philadelphia, May 1996. Published asACM
SIGPLAN Notices, vol. 31, (no.5), pp. 23–32, May 1996.

[63] Forgy, C.L.,OPS5 User’s Manual, Technical Report CMU-CS-81-135, Computer Scien
Department, Carnegie Mellon University, July 1981.

[64] Forgy, C.L., RETE: A fast algorithm for the many pattern/many object pattern matc
problem.Artificial Intelligence, No. 19, pp. 17–37, 1982.

[65] Forgy, C.L., RAL/C and RAL/C++: Rule-based extensions to C and C++.Position Papers for
the OOPSLA’94 Embedded Object-Oriented Production Systems Workshop (EOOPS), October
1994.

[66] Fowler, M., Scott, K.,UML Distilled: Applying the Standard Object Modeling Languag,
Addison-Wesley, 1997.

[67] Gamma E., Design Patterns Elements of Reusable Object-Oriented Software,Tutorial Notes
of TOOLS’95 Conference, 1995.

[68] Gamma E., Helm R., Johnson R., Vlissides J.Design Patterns Elements of Reusable Obje
Oriented Software. Addison-Wesley, Reading, Massachusetts, 1994.

[69] Gamma E., Weinand A., Marty R., Integration of a Programming Environment into ET+
Case Study,Proceedings ECOOP’89 (Nottingham, UK, July 10-14), pp. 283-297, S. Cook, e
Cambridge University Press, Cambridge, 1989.

[70] Garey M.R., Johnson D.S.,Computers and Intractability A Guide to the Theory of N
Completeness. W.H. Freeman & Company, NY 1979, 1979.

[71] Gehani N.H. and Jagadish H. V. Ode as an Active Database: Constraints and Tri
Proceedings of the 17th International Conference on Very Large Data Bases, Barcelona, pages
327-336, September 1991.

[72] Gehani, N.H., Jagadish, H.V., Shmueli, O., Event Specification in an Active Object-Orie
Database,Proc. ACM-SIGMOD 1992 Int’l Conf. on Management of Data, 1992.

[73] Gill, S., The diagnosis of mistakes in programmes on the EDSAC,Proceedings of the Royal
Society Series A Mathematical and Physical Sciences, 206(1087), pp. 538–554, Cambridg
University Press, May 1951.

[74] Golan, M.; Hanson, D.R. Duel-a very high-level debugging language. In: USE
Association.Proceedings of the Winter 1993 USENIX Conference. San Diego, CA, USA, 25-
29 Jan. 1993. Berkley, CA, USA: USENIX Assoc, 1993. p. 107-17.

[75] Gold, E.; Rosson, M.B., Portia: an instance-centered environment for Smalltalk.OOPSLA ‘91.
Object-Oriented Programming Systems, Languages, and Applications, Phoenix, AZ, USA, 6-
11 Oct. 1991. Published asSIGPLAN Notices, vol.26, (no.11), pp. 62-74, November 1991.

[76] Goldberg, A.,Smalltalk-80: The Interactive Programming Environment, Addison-Wesley,
Reading, MA, 1984.

[77] Goldberg, A.; Robson, D.;Smalltalk-80: The Language and its Implementation, Addison-
Wesley, Reading, MA, 1983.

[78] Gosling, J., Joy, B., Steele, G.,The Java Language Specification, Addison-Wesley 1996.
121

r Joins
ry

ted

 for
n
COTS

ler,
n and

mic
ing

ory
-35,

ented

 and

rch
[79] Haas, P.J.; Naughton, J.F.; Seshadri, S.; Swami, A.N., Selectivity and Cost Estimation fo
based on Random Sampling,7th Annual Conference on Computational Learning Theo.
Journal of Computer and System Sciences, June 1996, vol.52, (no.3):550-69.

[80] The Haley Enterprise, RETE++ and Eclipse, http://www.haley.com, 1999.

[81] Hanson, E.N., Rule Condition Testing and Action Execution in Ariel,Proceedings of 1992
ACM SIGMOD International Conference on Management of Data, pp. 49–58, June 1992.

[82] Hart D., Kraemer E., Roman G.-C., Interactive Visual Exploration of Distribu
Computations.Proceedings of the 11th International Parallel Processing Symposium, Geneva,
Switzerland, pp.121-127, April 1997.

[83] Hart D., Kraemer E., Roman G.-C.,Interactive Visual Exploration of Distributed
Computations. Pre-International Parallel Processing Symposium Technical Report,1997.

[84] Hao, M.C.; Karp, A.H.; Waheed, A.; Jazayeri, M., VIZIR: an integrated environment
distributed program visualization.Proceedings of the Third International Workshop o
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MAS
‘95, pp.288–92, Durham, NC, USA, January 1995.

[85] Henry, R. R., Whaley, K. M., Forstall B., The University of Washington Illustrating Compi
Proceedings of The ACM SIGPLAN’90 Conference on Programming Language Desig
Implementation, ACM Press, New York, 1990, pp. 223-233.

[86] Hölzle, U.; Chambers, C., Ungar, D., Debugging Optimized Code with Dyna
Deoptimization, Proceedings of The ACM SIGPLAN’92 Conference on Programm
Language Design and Implementation, Published asSIGPLAN Notices 27(7), ACM Press, pp.
32–43, 1992.

[87] Hölzle, U., A Fast Write Barrier for Generational Garbage Collectors,Proceedings of
OOPSLA’93 Workshop on Garbage Collection, Washington, D.C., September 1993.

[88] Hölzle, U.,Adaptive Optimization for Self: Reconciling High Performance with Explorat
Programming, Ph. D. Thesis, Sun Microsystems Laboratories Technical Report TR-95
1995.

[89] Hölzle, U.; Ungar, D., Reconciling Responsiveness with Performance in Pure Object-Ori
Languages,ACM Trans. Programming Languages and Systems 18(4), pp. 355-400, 1996.

[90] Horn, B. Constraint Patterns as a Basis for Object Oriented Programming.Proceedings of
SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
Applications, OOPSLA ‘92, Vancouver, BC, Canada, 20-22 Oct. 1992, Published asSIGPLAN
Notices, vol.27, (no.10), pp. 218–233. October 1992.

[91] Hudson, S.E.,CUP Parser Generator for Java, version 0.10i,
http://www.cs.princeton.edu/~appel/modern/java/CUP/ , February 1999.

[92] Hyrskykari A., Development of Program Visualization Systems,2nd Czech British Symposium
of Visual Aspects of Man-Machine Systems, March 27, 1993, Praha

[93] Ibaraki T., Kameda T., On the Optimal Nesting for ComputingN-Relational Joins., ACM
Transactions on Database Systems, Vol. 9, No. 3, pp. 482-502, September 1984.

[94] ILOG, ILOG Rules, White Paper, http://www.ilog.com/products/rules/whitepaper.pdf, Ma
1997.
122

nd Its
n

s
lantic

,

m

ry

ues,

t

f

.

ics

for
[95] Ioannidis Y. E., Kang Y. C., Left-deep vs. Bushy Trees: An Analysis of Strategy Spaces a
Implications for Query Optimization,Proceedings of the ACM SIGMOD Conference o
Management of Data, pp. 168-177, Denver, USA, May 1991.

[96] Ioannidis Y. E., Kang Y. C.,Randomized Algorithms for Optimizing Large Join Querie,
Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 312-321, At
City, USA, May 1990.

[97] Jarke, M., Koch, J., Query Optimization in Database Systems,ACM Computing Surveys, vol.
16, No. 2, pp. 111-152, June 1984.

[98] JavaTM Platform Debugger Architecture,
http://developer.java.sun.com/developer/earlyAccess/jbug/index.html, 1999.

[99] JavaTM 2 SDK Production Release, http://www.sun.com/solaris/, 1999.

[100] James, J.,The Kan Project—Reliable Concurrent Objects, http://www.cs.ucsb.edu/~dsl/Kan/
1999.

[101] Jerding, F.J., Stasko J.T.,Using Visualization to Foster Object-Oriented Program
Understanding, Technical Report GIT-GVU-94-33, July 1994

[102] Jerding, D.F., Stasko, J.T., Ball, T.,Visualizing Message Patterns in Object-Oriented Progra
Executions, Technical Report GIT-GVU-96-15, May 1996.

[103] Jones R., Lins R.,Garbage Collection Algorithms for Automatic Dynamic Memo
Management, Wiley, 1996.

[104] Kamkar, M., An Overview and Comparative Classification of Program Slicing Techniq
Journal of Systems and Software, vol. 31, pp. 197–214, July 1995.

[105] Karaorman, M., Hölzle, U.; Bruno, J.;jContractor: A Reflective Java Library to Suppor
Design By Contract, Technical Report TRCS98-31, December 1998.

[106] Keller, R., Hölzle, U.; Binary Component Adaptation,Proceedings ECOOP’98, Springer
Verlag Lecture Notes on Computer Science, Brussels, Belgium, July 1998.

[107] Keller, R., Hölzle, U.;Implementing Binary Component Adaptation for Java, Technical Report
TRCS98-21, August 1998.

[108] Keppel, D.,Fast Data Breakpoints. Technical Report UWCSE 93-04-06, University o
Washington, April 1993.

[109] Kessler, P., Fast Breakpoints: Design and Implementation.Proceedings of ACM SIGPLAN
conference on Programming Language Design and Implementation 1990, Published as
SIGPLAN Notices 25(6), pp. 78–84, ACM Press, June 1990.

[110] Khoshafian, S. N., Copeland, G. P., Object Identity,Proceedings of OOPSLA’86, pp. 406–416,
Portland, OR, November 1986. Published as SIGPLAN Notices 21(11), November 1986

[111] Kimelman D., Rosenburg B., Roth T., Strata-Various: Multi-Layer Visualization of Dynam
in Software System Behavior,Proceedings of Visualization’94, pp. 172-178, IEEE 1994.

[112] Kishon, A., Hudak, P., Consel, C., Monitoring Semantics: A Formal Framework
Specifying, Implementing, and Reasoning about Execution Monitors,Proceedings of ACM
SIGPLAN conference on Programming Language Design and Implementation 1991, Toronto,
Ontario, Canada, June 1991, pp. 338–352, ACM Press 1991.
123

es.,

work
.

ment
nt of

ted
 as

s and

dent
[113] Krishnamurthy, R., Boral, H., Zaniolo, C., Optimization of Nonrecursive Queri
Proceedings of International Conference on Very Large Data Bases (VLDB), pp. 128-137,
1986.

[114] Kulkarni, S.,Distributed Debugging, http://www.cs.ucsb.edu/~somil/thesis/proj.html, 1999.

[115] Laffra C., Advanced Java: Idioms, Pitfalls, Styles and Programming Tips, pp. 229-252,
Prentice Hall 1997.

[116] Laffra C., Malhotra A., HotWire: A Visual Debugger for C++,Proceedings of the USENIX
C++ Conference, pp. 109-122, Usenix Association 1994.

[117] Lange, D.B., Nakamura Y. Program Explorer: A Program Visualizer for C++,Proceedings of
USENIX Conference on Object-Oriented Technologies’95, pp. 39-54, June 1995.

[118] Lange, D.B., Nakamura Y.Object-Oriented Program Tracing and Visualization, IBM
Research Report, July 1995.

[119] Lange, D.B., Nakamura Y. Interactive Visualization of Design Patterns Can Help in Frame
Understanding,Proceedings of OOPSLA’95, pp. 342-357, Austin, TX October 1995
Published as SIGPLAN Notices 30(10), October 1995.

[120] Lange, D.B., Nakamura Y. Object-Oriented Program Tracing and Visualization,IEEE
Computer, vol. 30, no. 5, pp. 63–70, May 1997.

[121] Lehman, T.J., Carey, M.J., Query Processing in Main Memory Database Manage
Systems,Proceedings of 1986 ACM SIGMOD International Conference on Manageme
Data, pp. 239–250, May 1986.

[122] Lencevicius, R.; Hölzle, U.; Singh, A.K.,High-Level Debugger for Object-Oriented Programs,
Unpublished report, November 1995.

[123] Lencevicius, R.; Hölzle, U.; Singh, A.K., Query-Based Debugging of Object-Orien
Programs,Proceedings of OOPSLA’97, pp. 304-317, Atlanta, GA, October 1997. Published
SIGPLAN Notices 32(10), October 1997.

[124] Lencevicius, R.; Hölzle, U.; Singh, A.K., Dynamic Query-Based Debugging,Proceedings of
the 13th European Conference on Object-Oriented Programming’99, (ECOOP’99), Lisbon,
Portugal, June 1999, Published asLecture Notes on Computer Science 1628, Springer-Verlag,
1999.

[125] Liang, S., Bracha, G.; Dynamic Class Loading in the JavaTM Virtual Machine,Proceedings of
OOPSLA’98, pp. 36-44, Vancouver, October 1998. Published asSIGPLAN Notices 33(10),
October 1998.

[126] Lieuwen, D., Gehani, N., and Arlein R., The Ode Active Database: Trigger Semantic
Implementation.Proceedings of Data Engineering, February–March 1996.

[127] Lindholm, T., Yellin, F.,The JavaTM Virtual Machine Specification, Addison-Wesley 1996.

[128] Litman D.; Mishra A.; Patel-Schneider P.F., Modeling Dynamic Collections of Interdepen
Objects Using Path-Based Rules,Proceedings of OOPSLA’97, pp. 77-92, Atlanta, GA,
October 1997. Published asSIGPLAN Notices32(10), October 1997.

[129] Maloney J.,Morphic: The Self User Interface Framework, Sun Microsystems and Stanford
University, 1995.
124

tem.

r

ing-

ages,

data-
ted
).

gim,

3.

tion,

rrent

ented
[130] McCarthy, D. R., Dayal, U., The Architecture Of An Active Data Base Management Sys
Proceedings of 1989 ACM SIGMOD International Conference on Management of Data, pp.
215–224, 1989.

[131] McHugh, J.A.Algorithmic Graph Theory, Prentice-Hall 1990.

[132] Meyer B.,Object-oriented Software Construction, pp. 111–163, Prentice-Hall, 1988.

[133] Meyer B., Applying Design by Contract,IEEE Computer, vol. 25, no. 10 pp. 45–51, Octobe
1992.

[134] Meyer B.,Eiffel: The Language, Prentice-Hall, 1992.

[135] Mishra, P., Eich, M. H., Join Processing in Relational Databases,ACM Computing Surveys,
vol. 24, No. 1, pp. 63-113, March 1992.

[136] Mitchell, G., Dayal, U., Zdonik, S.B., Control of an Extensible Query Optimizer: A Plann
Based Approach,Proceedings of the 19th VLDB Conference, 1993.

[137] Mössenböck, H., Films as graphical comments in the source code of programs.Proceedings of
the International Conference on Technology of Object Oriented Systems and Langu
TOOLS-23, pp. 89-98, Santa Barbara, CA, USA, July-August 1997.

[138] Myers, A.C., Bank, J.A., and Liskov, B. Parameterized Types for Java.Proceedings of the 24th
ACM Symposium on Principles of Programming Languages, January 1997.

[139] Nishimura, S.; Ohori, A.; Tajima, K., An equational object-oriented data model and its
parallel query language. In:OOPSLA ‘96: Eleventh Annual Conference on Object Orien
Programming Systems Languages and Applications, San Jose, CA, USA, 6-10 Oct. 1996
Published asSIGPLAN Notices, vol.31, (no.10), pp. 1-17, October 1996.

[140] Noble J., Groves L., Biddle R., Object Oriented Program Visualisation in Tarrain
Australian Computer Journal, 27:4, November 1995.

[141] Noble R. J., Groves L.J., Tarraingim - A Program Animation Environment,Proceedings of the
12th New Zealand Computer Conference, Dunedin, August 14-16, 1991

[142] Oflazer, K., Partitioning in Parallel Processing of Production Systems,Ph.D. Thesis, Computer
Science Department, Carnegie Mellon University, March 1987.

[143] OST,Source vs. Object Level Debugging, Objective Software Technology, White Paper, 199

[144] Price B.A., Baecker, R.M., and Small, I.S. A Principled Taxonomy of Software Visualiza
Journal of Visual Languages and Computing,4(3), p.211-266.

[145] Production Systems Technologies,OPSJ, RETE II, http://www.pst.com/, 1999.

[146] Roman G.-C., Cox K.C., A Taxonomy of Program Visualization Systems,IEEE Computer
26(12), pp. 11-24, December 1993.

[147] Roman, G.-C. et al., Pavane: A System for Declarative Visualization of Concu
Computations, Journal of Visual Languages and Computing, Vol. 3, No. 2, pp. 161-193, June
1992.

[148] Roman G.-C.; Cox, K. C.; Wilcox, C.D.; Plun, J.Y;Pavane: A System for Declarative
Visualization of Concurrent Computations, Technical Report, WUCS-91-26, April 1991.

[149] Sefika M., Design Conformance Management of Software Systems: An Architecture-Ori
Approach.Ph.D. thesis, University of Illinois at Urbana-Champaign, July 1996.
125

ems,

tices

h Its

Path

.

ted

-wide
t
rence

en a

tion,
Data

onal
[150] Sefika M., Campbell R.H., An Open Visual Model For Object-Oriented Operating Syst
Fourth International Workshop on Object Orientation In Operating Systems, Lund, Sweden,
August 1995.

[151] Sefika M., Sane A., Campbell R.H., Architecture-Oriented Visualization, InProceedings of
OOPSLA’96, pp. 389-405, San Jose, CA, October 1996. Published as SIGPLAN No
31(10), October 1996.

[152] Sefika M., Sane A., Campbell R.H., Monitoring Compliance of a Software System Wit
High-Level Design Models,Proceedings of the 18th International Conference on Software
Engineering (ICSE), March 1996.

[153] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., Price, T. G., Access
Selection in a Relational Database Management System,Proceedings of the ACM SIGMOD
Conference on Management of Data, pp. 23-34, Boston, USA, June 1979.

[154] Shaw, G.M.; Zdonik, S.B., A query algebra for object-oriented databases. In:Sixth
International Conference on Data Engineering, Los Angeles, CA, USA, 5-9 Feb. 1990. pp
154-62, Los Alamitos, CA, USA: IEEE Comput. Soc, 1990.

[155] Shilling J.J, Stasko J.T.,Using Animation to Design, Document and Trace Object-Orien
Systems, Technical Report GIT-GVU-92-12, 1992

[156] Smith, R.B.; Maloney, J.; Ungar, D. The Self-4.0 user interface: manifesting a system
vision of concreteness, uniformity, and flexibility.OOPSLA ‘95: Conference on Objec
Oriented Programming Systems Languages and Applications. Tenth Annual Confe,
Austin, TX, USA, 15-19 Oct. 1995. Published asSIGPLAN Notices, vol.30, (no.10), pp. 47-60,
October 1995.

[157] Smith, R.B., Wolczko, M., Ungar, D., From Kanzas to Oz: Collaborative Debugging Wh
Shared World Breaks,Communications of the ACM, Vol. 40., No. 4, pp. 72–79, April 1997.

[158] Standard Performance Evaluation Corporation,SPEC JVM98 Benchmarks,
http://www.spec.org/osg/jvm98/, 1998.

[159] Stasko, J., TANGO: A Framework and System for Algorithm Animation,IEEE Computer
23(9), pp. 27-39.

[160] Steinbrunn, M., Moerkotte, G., Kemper, A.,Optimizing Join Orders, Technical Report MIP
9307, Universität Passau, FMI, September 1993.

[161] Stonebraker, M., Implementation of Integrity Constraints and Views by Query Modifica
Proceedings of the 1975 ACM SIGMOD International Conference on Management of ,
June 1975.

[162] Swami, A., Optimization of Large Join Queries: Combining Heuristics and Combinati
Techniques,Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 367-
376, Portland, USA, May 1989.

[163] Swami, A., Gupta A., Optimization of Large Join Queries,Proceedings of the ACM SIGMOD
Conference on Management of Data, pp. 8-17, Chicago, USA, 1988.

[164] Swami, A., Iyer, B., A Polynomial Time Algorithm for Optimizing Join Queries,Proceedings
of the IEEE Conference on Data Engineering, pp. 345-354, Vienna, 1993.
126

T., A

orks,

,

ation
ware

sses,

bjects:

iacy,

.

ect-

n

tation.
and

ation.
[165] Sweet, R.E., The Mesa Programming Environment.ACM SIGPLAN 85 Symposium on
Language Issues in Programming Environments, ACM Press 1985, (ACM SIGPLAN Notices
20(7), July, 1985), pp. 216-229

[166] Swineheart, D.C., Zellweger, P.T., Hagmann, R.B., The Structure of Cedar.ACM SIGPLAN 85
Symposium on Language Issues in Programming Environments, ACM Press 1985, (ACM
SIGPLAN Notices 20(7), July, 1985), pp. 230–244

[167] Takahashi, S., Matsuoka, S., Miyashita, K., Hosobe, H., Yonezawa, A., Kamada,
Constraint-Based Approach for Visualization and Animation,Constraints 3(1): pp. 61–86,
1998.

[168] Tekinay S., Jabbari B., Hand-over and Channel Assignment in Mobile Cellular Netw
IEEE Communications Magazine, vol. 29, no. 11, November 1991, p. 42 - 46.

[169] Tip, F., A survey of program slicing techniques.Journal of Programming Languages, vol.3,
(no.3) pp. 121-89, Sept. 1995.

[170] Ullman, J.D.,Principles of Database Systems, pp. 268-316, Computer Science Press 1982.

[171] Ullman, J.D.,Principles of Data and Knowledge Bases, vol. I - II, Computer Science Press
Woodland Hills, CA, 1988.

[172] Ullman, J.D., Widom J.,A First Course in Database Systems, Prentice Hall, Upper Saddle
River, NJ, 1997.

[173] Ungar, D. M., Generation scavenging: A non-disruptive high-performance storage reclam
algorithm,ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Soft
Development Environments, ACM Press 1984, (ACM SIGPLAN Notices 19(5), May, 1987), pp.
157-167.

[174] Ungar, D. M., Chambers, C., Chang, B.-W., Hölzle, U., Organizing Programs Without Cla
Lisp and Symbolic Computation: An International Journal, vol. 4., No. 3, 1991.

[175] Ungar, D. M., Chambers, C., Chang, B.-W., Hölzle, U., Parents are Shared Parts of O
Inheritance and Encapsulation in SELF,Lisp and Symbolic Computation: An International
Journal, vol. 4., No. 3, 1991.

[176] Ungar, D., Lieberman, H., Fry, C., Debugging and the Experience of Immed
Communications of the ACM, Vol. 40., No. 4, pp. 38–44, April 1997.

[177] Ungar, D., Smith, R.B., Self: The Power of Simplicity,Proceedings of OOPSLA’87, pp. 227-
243, Orlando, FL, October 1987. Published as SIGPLAN Notices 22(12), October 1987

[178] Vion-Dury J.-Y., Santana M., Virtual Images: Interactive Visualization of Distributed Obj
Oriented Systems, OOPSLA’94, ACM Press 1994, pp. 65–84, 1994.

[179] Wahbe R., Efficient Data Breakpoints.Proceedings of the Fifth International Conference o
Architectural Support for Programming Languages and Operating Systems, Boston, MA,
October 1992. pp. 200–212, ACM Press 1992.

[180] Wahbe R., Lucco S., Graham S.L., Practical Data Breakpoints: Design and Implemen
Proceedings of ACM SIGPLAN conference on Programming Language Design
Implementation 1993, Albuquerque, June 1993. ACM Press 1993.

[181] Wahbe R., Lucco S., Anderson, T.E., Graham S.L., Efficient Software-Based Fault Isol
Proceedings of the Symposium on Operating System Principles1993.
127

k, J.,

ation
gs of
er,

s,

 as an
arge

stems.

y:

n a
 of
[182] Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson, D., Isaa
Visualizing Dynamic Software System Information through High-level Models,Proceedings
of OOPSLA’98, pp. 271-283, Vancouver, October 1998. Published asSIGPLAN Notices
33(10), October 1998.

[183] Weinand, A.; Gamma, E. ET++-a portable, homogenous class library and applic
framework. In:Computer Science Research at UBILAB, Strategy and Projects. Proceedin
the UBILAB Conference ‘94, Zurich, Switzerland, 1994. pp. 66-92. Edited by: Bischofberg
W.R.; Frei, H.-P. Konstanz, Switzerland: Universitätsverlag Konstanz, 1994.

[184] Weiser, M., Program slicing. In:5th International Conference on Software Engineering, San
Diego, CA, USA, 9-12 March 1981. New York, NY, USA, pp. 439-49, IEEE, 1981.

[185] Weiser, M., Program Slicing.IEEE Transactions of Software Engineering, Vol. SE-10, No. 4,
pp. 352–357, July 1984.

[186] Weiser, M., Programmers Use Slices When Debugging,Communications of the ACM, Vol. 25,
No. 7, pp. 446–452, July 1982.

[187] Welch I. and Stroud R., Dalang—A Reflective Java Extension.Proc. of Workshop on Reflective
Programming in C++ and Java. UTCCP Report 98-4, Center for Computational Physic
University of Tsukuba, Japan, ISSN 1344-3135, October 1998.

[188] West, A. Animating C++ Programs, Objective Software Technology, White Paper, 1993.

[189] Widom, J., Cochrane R.J., and Lindsay B. Implementing Set-Oriented Production Rules
Extension to Starburst.Proceedings of the Seventeenth International Conference on Very L
Data Bases, pp. 275–285, Barcelona, Spain, September 1991.

[190] Widom J. and Finkelstein S.J. Set-Oriented Production Rules in Relational Database Sy
Proceedings of the ACM SIGMOD International Conference on Management of Data, pp.
259–270, Atlantic City, New Jersey, May 1990.

[191] Widom J. The Starburst Active Database Rule System.IEEE Transactions on Knowledge and
Data Engineering, 8(4), pp. 583–595, August 1996.

[192] Wilson, P.R., Uniprocessor Garbage Collection Techniques,Proceeedings of International
Workshop on Memory Management IWMM 9, St. Malo, France, 17-19 Sept. 1992, Edited b
Bekkers, Y.; Cohen, J. Berlin, Germany: Springer-Verlag, p. 1–42, 1992.

[193] Wilson, P.R.; Moher, T.G. Demonic Memory for Process Histories.ACM SIGPLAN ‘89
Conference on Programming Language Design and Implementation, Portland, OR, USA, 21-
23 June 1989, Published as SIGPLAN Notices, vol.24, (no.7), pp. 330–343, July 1989.

[194] Wong, E., Youssefi, K., Decomposition - A Strategy for Query Processing.ACM Transactions
on Database Systems, vol. 1., No. 3, pp. 223-241, September 1976.

[195] xDuel, http://www.math.tau.ac.il/~frangy/, currently inaccessible, 1999.

[196] Zeller A., Lütkehaus D. DDD—A Free Graphical Front-End for UNIX Debuggers.ACM
SIGPLAN Notices, Vol. 31, No. 1, pp. 22-28, January 1996.

[197] Zhuge, Y., Garcia-Molina, H., Hammer, J., and Widom, J., View Maintenance i
Warehousing Environment. 1995ACM SIGMOD International Conference on Management
Data, 1995.SIGMOD Record, vol. 24, pp. 316–327, 1997.
128

n
dge is
e a

 to be
e

n

Appendix A Generalized Graph Matching

“Meanwhile, back at reality...”
G. Lucas

“If you’re too busy to help your friends, you’re
too busy!”

L. Iacocca

Generalized Pattern Matching problem

The Generalized Pattern Matching problem is defined as follows:

INSTANCE: Two arbitrary directed graphsG andH in which each vertex is labeled with a
element of the setL (note that two or more vertices may have the same label) and every e
labeled with an element of the setI (note that all the outgoing edges of a single vertex hav
unique label, but the outgoing edges of different vertices may have the same label).

QUESTION: DoesG occur inH, i.e., is it possible to delete edges and vertices fromH in such
a way that the resulting graph is identical toG?

Theorem 1. The GPM problem is NP-Complete.

Proof: The GPM problem is in NP: a nondeterministic algorithm can guess the edges
deleted from graphH to get a graph identical toG and then the algorithm can check that th
guess was correct in time polynomial with respect to the number of edges and vertices iG.

We now show that 3-SAT polynomially reduces to GPM.

Given an arbitrary 3-SAT problem(C,X), we construct the directed graphsG andH as follows.
Let C consist of clausesC1, C2, ..., Cm, and letX consist of boolean variablesX1, X2, ..., Xn.

In G there is one vertex labeledXi for each variableXi; call thesevariable vertices. For each
clauseCj = (xj1, xj2, xj3), wherexj1, xj2, xj3 are literals overX, there are four verticesCj1, Cj2, Cj3,
Cj4 with their respective names as labels; we call all vertices with labelsCji clause vertices. We
also add the following edges:

(Cj1,Xj1), (Cj2,Xj2), (Cj3,Xj3), (Cj1, Cj4), (Cj2, Cj4), (Cj3, Cj4)

Pictorially the graphG constructed for clauseCj is shown in Figure 34.

In H there are two verticesxi andxi, labeledXi for each variableXi; we call themvalue vertices.
For each clauseCj = (xj1, xj2, xj3) there are 28 vertices:

11:Cj1, 21:Cj1, ..., 71:Cj1,

12:Cj2, 22:Cj2, ..., 72:Cj2,
129

ls of

f
. The

M

a
 that
tion.

 the
13:Cj3, 23:Cj3, ..., 73:Cj3, and

14:Cj4, 24:Cj4, ..., 74:Cj4.

The label of vertexmn:Cji is Cji .

We also add the following directed edges:

(11:Cj1, xj1:Xj),(12:Cj2, xj2:Xj),(13:Cj3,xj3:Xj),(11:Cj1,14:Cj4), (12:Cj2,14:Cj4), (13:Cj3,14:Cj4),

(21:Cj1, xj1:Xj),(22:Cj2,xj2:Xj),(23:Cj3, xj3:Xj),(21:Cj1,24:Cj4), (22:Cj2,24:Cj4), (23:Cj3,24:Cj4),

(31:Cj1, xj1:Xj),(32:Cj2,xj2:Xj), (33:Cj3,xj3:Xj), (31:Cj1,34:Cj4), (32:Cj2,34:Cj4), (33:Cj3,34:Cj4),

(41:Cj1,xj1:Xj),(42:Cj2, xj2:Xj),(43:Cj3, xj3:Xj),(41:Cj1,44:Cj4), (42:Cj2,44:Cj4), (43:Cj3,44:Cj4),

(51:Cj1,xj1:Xj),(52:Cj2, xj2:Xj), (53:Cj3,xj3:Xj), (51:Cj1,54:Cj4), (52:Cj2,54:Cj4), (53:Cj3,54:Cj4),

(61:Cj1,xj1:Xj),(62:Cj2,xj2:Xj), (63:Cj3, xj3:Xj), (61:Cj1,64:Cj4), (62:Cj2,64:Cj4), (63:Cj3,64:Cj4),

(71:Cj1,xj1:Xj), (72:Cj2,xj2:Xj), (73:Cj3,xj3:Xj), (71:Cj1,74:Cj4), (72:Cj2,74:Cj4), (73:Cj3,74:Cj4).

All the edges of graphsG andH are assumed to be labeled by a pair composed of the labe
initial and terminal vertices. The set of all such labels is the setI. SetL contains elementsC11,
..., Cm1, C12, ..., Cm2, C13, ..., Cm3, C14, ..., Cm4, X1, X2, ..., Xn.

The construction above is used to show that even if the graphG is bipartite and each vertex o
it has no more than two outgoing edges, the problem still remains NP-complete
construction can be simplified to prove the theorem for general graphs.

We claim that the 3-SAT problem(C, X) has a solution if and only if the instance of GP
constructed from it is satisfiable.

Assume that the instance of the 3-SAT problem(C,X) has a solution. Then there exists
selection of eitherxi orxi for eachi = 1..n such that all the clauses are satisfied. That means
for each clauseCj there is a triplet of value vertices which satisfies it as a part of the solu
Moreover this triplet will correspond to one of the seven sextuplets in the graphH as introduced
above. So for each clauseCj we can select a set of four clause vertices corresponding to

Figure 34. Subgraph corresponding to clauseCj in graphG

Cj1

Xj1 Cj4

Cj2

Xj2

Cj3

Xj3
130

ith the

triplet
T

triplet satisfying the clause. It is clear that the graph induced by these vertices together w
appropriate set of value vertices forms an occurrence of graphG.

Now assume that GPM has a solution. Then we have a set of clause vertices with labelsC11, ...,
Cm1, C12, ..., Cm2, C13, ..., Cm3, C14, ..., Cm4 and a set of value vertices with labelsX1, X2, ...,
Xn that form a graphG in graphH. From the construction of the graphsG andH, we have a
selection of eitherxi or xi for eachi = 1..n, and for eachCj we have four value vertices with
labelsCi1, Ci2, Ci3, Ci4 that are connected between themselves and to the corresponding
of value vertices. It is clear that the selection ofxi’s is the solution to the corresponding 3-SA
problem. Q.E.D.
131

132

e field
lumn

ber of
 seven
iven

ge of all
elds of

he last
 fields
at only
Appendix B Detailed Data

“What am I doing here?”
Any recruit, any army

“How come I get all the hard questions?”
O. North

This appendix contains detailed data collected during the experiments. Table 17 gives th
assignment numbers for all SPECjvm98 benchmark applications. The “Frequency” co
gives the frequency in assignments per second. The “Total” column gives a total num
fields across all programs that fall into a given assignment frequency range. The next
columns give the total number of fields for a particular benchmark that fall into a g
assignment frequency range. The last column expresses the total number as percenta
fields. E.g. 209 fields or 19.22% are assigned less than 0.1 times per second. 3 fi
compress, 92 fields ofjess, etc., have less than 0.1 assignment frequency.

The second section of the table gives the numbers for finer frequency ranges. Finally, t
section of the table provides the data in cumulative form. For example, it shows that 519
or 47.74% are assigned less than 10 times per second, though the first part shows th
12.23% of the fields are assigned between one and ten times a second.

F
re

qu
en

cy

Total

C
om

pr
es

s

Jess Db Javac MPEG Jack Ray % of all

0.1 209 3 92 13 0 79 2 20 19.22

1 177 28 16 1 44 29 29 30 16.28

10 133 2 29 1 66 0 34 1 12.23

100 159 5 21 0 98 2 20 13 14.62

1K 178 0 11 4 130 15 17 1 16.37

10K 119 0 1 0 74 18 12 14 10.94

100K 87 2 15 0 30 25 9 6 8.00

1M 21 4 2 0 6 6 0 3 1.93

2M 4 4 0 0 0 0 0 0 0.36

Table 17. Field assignment frequency in SPECjvm98 applications
133

0.1 209 3 92 13 0 79 2 20 19.22

0.5 115 14 15 1 32 29 1 23 10.57

1 62 14 1 0 12 0 28 7 5.70

5 94 2 19 1 44 0 28 0 8.64

10 39 0 10 0 22 0 6 1 3.58

50 119 5 9 0 86 2 17 0 10.94

100 40 0 12 0 12 0 3 13 3.67

500 124 0 9 4 86 11 14 0 11.40

1K 54 0 2 0 44 4 3 1 4.96

5K 79 0 1 0 58 2 11 7 7.26

10K 40 0 0 0 16 16 1 7 3.67

50K 66 2 6 0 24 20 9 5 6.07

100K 21 0 9 0 6 5 0 1 1.93

500K 17 3 2 0 6 6 0 0 1.56

1M 4 1 0 0 0 0 0 3 0.36

2M 4 4 0 0 0 0 0 0 0.36

0.1 209 3 92 13 0 79 2 20 19.22

0.5 324 17 107 14 32 108 3 43 29.80

1 386 31 108 14 44 108 31 50 35.51

5 480 33 127 15 88 108 59 50 44.15

10 519 33 137 15 110 108 65 51 47.74

50 638 38 146 15 196 110 82 51 58.69

100 678 38 158 15 208 110 85 64 62.37

500 802 38 167 19 294 121 99 64 73.78

F
re

qu
en

cy
Total

C
om

pr
es

s

Jess Db Javac MPEG Jack Ray % of all

Table 17. Field assignment frequency in SPECjvm98 applications
134

head is
cution
pear in
to load
rogram
 spent
e first
 time

n time.
e. For

lection,
f query
Table 18 shows the breakdown of the query overhead and the overhead itself. The over
given in the rightmost column as a ratio of execution time with a query enabled to the exe
time of the original program. The queries are numbered in the same order as they ap
Table 5 in section 4.4.1. The loading overhead is the difference between the time it takes
and instrument classes using a custom class loader, and the time it takes to load a p
during normal execution. The garbage collection time is the difference between the time
for garbage collection in the queried program and the GC time in the original program. Th
evaluation time is the time it takes to evaluate the query for the first time. The evaluation
is the time spent evaluating the query. This component does not include the first evaluatio
The first evaluation time and the evaluation time together compose the total evaluation tim
example, 3.1% of query 14 overhead is spent on instrumentation, 34.27% on garbage col
3.26% in the first evaluation, and 59.35% in subsequent reevaluations. The overhead o
14 was 3.42.

1K 856 38 169 19 338 125 102 65 78.74

5K 935 38 170 19 396 127 113 72 86.01

10K 975 38 170 19 412 143 114 79 89.69

50K 1041 40 176 19 436 163 123 84 95.76

100K 1062 40 185 19 442 168 123 85 97.70

500K 1079 43 187 19 448 174 123 85 99.26

1M 1083 44 187 19 448 174 123 88 99.63

2M 1087 48 187 19 448 174 123 88 100

Q
ue

ry
 #

Lo
ad

in
g

GC

F
irs

t
ev

al
ua

tio
n

E
va

lu
at

io
n

O
ve

rh
ea

d

1 44.09 45.75 0 10.14 1.02

2 70.95 23.31 0 5.73 1.10

3 85.63 8.54 0 5.82 1.24

Table 18. Breakdown of query overhead

F
re

qu
en

cy
Total

C
om

pr
es

s

Jess Db Javac MPEG Jack Ray % of all

Table 17. Field assignment frequency in SPECjvm98 applications
135

ists the
e, the
rhead
en in

ime to
Tables 19–21 give more detailed data on various aspects of query evaluation. Table 19 l
total program execution time, the original program execution time, the query overhead tim
program execution time with loading overhead only (no query evaluation), the loading ove
itself, the garbage collection overhead, and the first query overhead. All times are giv
milliseconds. The last two columns give the number of debugger invocations and the t
evaluate a single query (Tevaluate) in microseconds.

4 13.05 1.04 0 85.89 1.18

5 8.80 1.49 0 89.70 1.27

6 6.38 0.68 0 92.92 1.37

7 0.49 0.01 0 99.48 5.82

8 13.20 6.02 0 80.76 1.18

9 24.94 0.85 0 74.19 1.09

10 2.85 0.38 0 96.76 1.83

11 44.63 12.87 0 42.48 1.23

12 10.56 0.22 0 89.21 1.98

13 1.04 1.44 0.95 96.55 2.13

14 3.104 34.27 3.26 59.35 3.42

15 0.04 1.13 0.07 98.74 229.24

16 0.01 0.92 0.01 99.05 157.25

17 0.03 1.17 0.01 98.7 77.21

18 1.93 0.21 0 97.8 6.35

19 0.71 1.28 1.11 96.88 227.51

20 0.17 0.32 0.27 99.22 930.06

Q
ue

ry
 #

Lo
ad

in
g

GC

F
irs

t
ev

al
ua

tio
n

E
va

lu
at

io
n

O
ve

rh
ea

d

Table 18. Breakdown of query overhead
136

cution
ry 4 ran
query.
ith the

0

8

0

9

6

9

2

9

7

46

01

89

1

Table 20 lists the results of two experiments. The first three columns give the program exe
times and overheads when custom selection code was not generated. For example, que
68.5 times slower than the original program and 57.93 times slower than the optimized
The three columns on the right side of the table give the results of queries executed w

Q
ue

ry
 #

Total
time

O
rig

in
al

tim
e

O
ve

rh
ea

d

T
im

e
w

ith
lo

ad
in

g

Lo
ad

in
g

ov
er

he
ad

GC F
Q

ov
er

he
ad

In
vo

ca
tio

ns

Tevaluate

1 58526 57324 1202 57854 530 550 0

2 16356 14786 1570 15900 1114 366 0 420000 3.73

3 26760 21471 5289 26000 4529 452 0 3794911 1.39

4 59596 50406 9190 51606 1200 96 0 65616330 0.14

5 64042 50406 13636 51606 1200 204 0 65616330 0.2

6 69191 50406 18785 51606 1200 129 0 65616330 0.2

7 293699 50406 243293 51606 1200 42 0 65616330 3.7

8 59495 50406 9089 51606 1200 548 0 47052800 0.1

9 55216 50406 4810 51606 1200 41 0 9861615 0.48

10 92450 50406 42044 51606 1200 160 0 9861615 4.2

11 20923 16971 3952 18735 1764 509 0 13381240 0.2

12 33665 16971 16694 18735 1764 37 0 39264920 0.4

13 122186 57324 64862 58000 676 939 620 82543 785.7

14 50672 14786 35886 15900 1114 12300 1171 631000 56.8

15 3890531 16971 3873560 18735 1764 44040 2988 7088454 546.

16 7926776 50406 7876370 51606 1200 73000 621 131232660 60.

17 3892187 50406 3841781 51606 1200 45000 720 75477945 50.

18 15116 2380 12736 2626 246 28 0 100000000 0.12

19 57107 251 56856 655 404 730 635 10000000 5.68

20 233446 251 233195 655 404 753 648 10000000 23.3

Table 19. Execution times, overhead times, and invocation frequency
137

riginal

t three
uation.
er than
ueries
same value test disabled. For example, query 13 runs 3.43 times slower than the o
program and 61% slower than the optimized query.

Table 21 shows results of evaluating queries without incremental reevaluation. The firs
columns indicate the program execution times and overheads without incremental reeval
For example, query 2 ran 613 times slower than the original program and 554 times slow
the optimized query. The four columns on the right side of the table give the results of q

Query
#

No fast
selections

time

No fast
ratio to
original

No fast
ratio to

optimized

No
change

test time

No
change
ratio to
original

No
change
ratio to

optimized

1 60443 1.05 1.03 58082 1.01 0.99

2 21993 1.48 1.34

3 257305 11.98 9.61 26684 1.24 0.99

4 3452858 68.50 57.93

5 3239434 64.26 50.58

6 3270410 64.88 47.26

7 3509850 69.63 11.95

8 2197827 43.60 36.94

9 531086 10.53 9.61

10 561512 11.13 6.07

11 359111 21.16 17.16 20680 1.21 0.98

12 1032903 60.86 30.68 39200 2.30 1.16

13 197089 3.43 1.61

14

15 3985049 234.81 1.02

16

17

18 4646048 1952.12 307.35

19

20

Table 20. Results for evaluations with no fast selections and no change tests
138

s and
ogram
 show
rogram

8

that ran so long that we stopped query reevaluation after the first 100,000 evaluation
estimated the total overhead. The first two columns give the time it took to execute the pr
for 100,000 query evaluations and the estimated full execution time. The last two columns
the overheads. For example, query 3 has estimated overhead of 7135 over the original p
and 5725 over the optimized query.

Query
#

Non
incremental

Noninc
ratio to
original

Noninc
ratio to

optimized

N
on

 in
cr

em
en

ta
l

10
0K

 a
ss

ig
nm

en
ts

Non
incremental
 calculated

time

Noninc
ratio to
original

Noninc
ratio to

optimized

1 67932 1.18 1.16

2 9064124 613.02 554.17 5756038 24128044 1631.81 1475.1

3 4057943 153201990 7135.29 5725.03

4 86822 23945248 475.04 401.79

5 86750 23898004 474.11 373.16

6 95443 29602032 587.27 427.83

7 89726 25850746 512.85 88.01

8 79799 13880635 275.37 233.30

9 68838 1868098 37.06 33.83

10 70319 2014149 39.95 21.78

11 1345266 177759312 10474.29 8495.88

12 786181 302046662 17797.81 8972.12

13 1258899 21.96 10.30

14 4636672 29178886 1973.41 575.83

15 2986276 210494790 12403.20 54.10

16 115974 86097036 1708.07 10.86

17 96914 35153688 697.41 9.03

18 12407634 5213.29 820.82

Table 21. Non-incremental evaluation results
139

ple, the
cond is
f 3.13.
Table 22 gives the predicted query overhead as a function of update frequency. For exam
predicted overhead of a low-cost selection query on a field updated 500,000 times per se
6.5%; the predicted overhead of a high-cost query with the same frequency is a factor o

19 374151 1490.64 6.55

20 1406216 5602.45 6.02

Frequency Low cost High cost

0.1 1.000000013 1.000000426

0.5 1.000000065 1.00000213

1 1.00000013 1.00000426

5 1.00000065 1.0000213

10 1.0000013 1.0000426

50 1.0000065 1.000213

100 1.000013 1.000426

500 1.000065 1.00213

1000 1.00013 1.00426

5000 1.00065 1.0213

10K 1.0013 1.0426

50K 1.0065 1.213

100K 1.013 1.426

500K 1.065 3.13

1M 1.13 5.26

2M 1.26 9.52

Table 22. Predicted slowdown

Query
#

Non
incremental

Noninc
ratio to
original

Noninc
ratio to

optimized

N
on

 in
cr

em
en

ta
l

10
0K

 a
ss

ig
nm

en
ts

Non
incremental
 calculated

time

Noninc
ratio to
original

Noninc
ratio to

optimized

Table 21. Non-incremental evaluation results
140

	Query-Based Debugging
	UNIVERSITY OF CALIFORNIA Santa Barbara A dissertat...
	Doctor of Philosophy in Computer Science
	by Raimondas Lencevicius
	Technical Report TRCS 99–27 Committee in charge:
	Professor Urs Hölzle, co-chair Professor Ambuj Kum...
	The dissertation of Raimondas Lencevicius is appro...
	___________________ Professor Teofilo Gonzalez
	___________________ Professor Martin Rinard
	___________________ Professor Jianwen Su
	___________________ Professor Ambuj Kumar Singh, c...
	___________________ Professor Urs Hölzle, co-chair...

	June 4, 1999 Copyright by Raimondas Lencevicius 19...
	Acknowledgments
	Vita
	Personalia
	Education
	Experience
	Publications

	Abstract
	Table of Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1� Problem Statement and Motivation
	Figure�1.�� Error in javac AST

	1.2� Contributions
	1.3� Overview

	2 Debugging—Background and Related Work
	Figure�2.�� Error in GUI program
	Figure�3.�� Error in javac AST
	2.1� Control Flow Debugging
	2.1.1� Breakpoints and Single Stepping
	2.1.2� Conditional Breakpoints
	2.1.3� Language Constructs
	2.1.4� Breakpoints and Testing Code
	2.1.5� Method Call Animation

	2.2� Data Observation
	2.2.1� Memory Inspection
	2.2.2� Data Structure Display Tools
	2.2.3� Data Filtering and Summary Tools

	2.3� Mixed Constructs
	2.3.1� Data Breakpoints
	2.3.2� Program Slicing

	2.4� Program Visualization Systems
	2.5� Summary

	3 Static Query-Based Debugging
	3.1� Introduction
	3.2� Query Model
	3.2.1� Assumptions
	Figure�4.�� Inconsistent list state

	3.2.2� Discussion
	3.2.3� Examples
	3.2.3.1� The Self Graphical User Interface
	Figure�5.�� Self morphs

	3.2.3.2� Understanding the Cecil Compiler

	3.3� Implementation
	Figure�6.�� Query-based debugger GUI
	3.3.1� General Structure of the System
	Figure�7.�� Overview of the query-based debugger
	Figure�8.�� Query evaluation pseudo-code
	Figure�9.�� Data structures of the intermediate fo...

	3.3.2� Enumerating All Objects in a Domain
	3.3.3� Overview of Query Execution
	Figure�10.�� Overview of query execution

	3.3.4� Join Ordering
	Figure�11.�� Left-deep join

	3.3.5� Maximum-Selectivity Heuristic
	3.3.6� Hash Joins
	Figure�12.�� Hash join

	3.3.7� Incremental Delivery
	Figure�13.�� Incremental delivery pipeline

	3.3.8� Related Work

	3.4� Experimental Results
	3.4.1� Benchmark Queries
	Table 1: Sample queries with their input and outpu...

	3.4.2� Execution Time
	Figure�14. Query execution times

	3.4.3� Join Ordering
	Figure�15. Completion time depending on join order...

	16
	17
	18
	Table 2: Completion time depending on join orderin...
	3.4.4� Incremental Delivery
	3.4.5� Hash Joins

	7
	8
	9
	13
	15
	16
	18
	Table 3: Slowdown of nested queries vs. hash queri...

	7
	8
	9
	13
	15
	16
	18
	Table 4: Response time (time to first result)
	3.5� Related work
	3.6� Summary

	4 Dynamic Query-Based Debugger
	4.1� Introduction
	Figure�16.�� Error in javac AST

	4.2� Query Model and Examples
	4.2.1� Ideal Gas Tank Example
	Figure�17.�� Error in molecule simulation

	4.3� Implementation
	Figure�18.�� Data-flow diagram of dynamic query-ba...
	4.3.1� General Structure of the System
	4.3.2� Java Program Instrumentation
	Figure�19.�� Java program instrumentation

	4.3.3� Change Monitoring
	4.3.4� Domain Collection Maintenance
	4.3.5� Overview of Query Execution
	Figure�20.�� Control flow of query execution
	4.3.5.1� Incremental Reevaluation
	Figure�21.�� Incremental query evaluation

	4.3.5.2� Custom Code Generation for Selection Quer...
	Figure�22.�� Selection evaluation using custom cod...

	4.3.6� Related Work
	4.3.6.1� Runtime Information Gathering Techniques
	4.3.6.2� Load-Time Code Instrumentation
	Figure�23.�� Modifying a VM to implement LTA.
	Figure�24.�� Performing LTA with a custom class lo...
	Figure�25.�� Implementing LTA by intercepting syst...
	Figure�26.�� Implementing LTA using dynamic linkin...

	4.3.7� Dynamic Query Debugger Implementations for ...

	4.4� Experimental Results
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. ������z.x == z1.x &...
	14. Lexer l; Token t. ������l.token == t && t.type...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1.����� th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�5.�� Benchmark queries
	4.4.1� Benchmark Queries
	1. Compress
	2. Jess
	3. Ray tracer
	4. Decaf
	5. Ideal gas tank
	Table�6.�� Application sizes and execution times

	4.4.2� Execution Time
	Figure�27.�� Program slowdown (queries 15–20 not s...
	Figure�28.�� Breakdown of query overhead as a perc...
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. ������z.x == z1.x &...
	14. Lexer l; Token t. �����l.token == t && t.type ...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1. �����th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�7.�� Overhead of non-incremental evaluation

	4.4.3� Optimizations
	4.4.3.1� Incremental Reevaluation
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Test5 z.���� z.x < 0
	Table�8.�� Benefit of custom selection code (selec...

	4.4.3.2� Custom Generated Selection Code
	4.4.3.3� Same Value Assignment Test
	1. Molecule1 z. �����z.x > 350
	2. spec.benchmarks._202_jess.jess.Token z. �����z....
	3. spec.benchmarks._205_raytrace.Point p. �����p.x...
	4. spec.benchmarks._205_raytrace.Point p. �����p.f...
	5. Molecule1 z; Molecule2 z1. ����z.x == z1.x && z...
	6. spec.benchmarks._205_raytrace.Point p; ������sp...
	Table�9.�� Unnecessary assignment test optimizatio...

	4.5� Performance Model
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. �����z.x == z1.x &&...
	14. Lexer l; Token t. �����l.token == t && t.type ...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1. �����th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�10.�� Frequencies and individual evaluation ...
	4.5.1� Debugger Invocation Frequency
	Figure�29.�� Field assignment frequency in SPECjvm...
	Figure�30.�� Predicted slowdown
	1. Compress
	2. Jess
	3. Db
	4. Javac
	5. Mpegaudio
	6. Jack
	7. Ray tracer
	8. Decaf
	9. Ideal gas tank
	10. Microbenchmark
	Table�11.�� Maximum field assignment frequencies

	4.6� Queries with Changing Results
	1. Molecule1 z. ����z.x < 200
	2. Id x. �����x.type == 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Compressor z. ���...
	5. spec.benchmarks._201_compress.Compressor z. ���...
	6. Molecule1 z; Molecule2 z1. �����z.x < z1.x && z...
	7. Lexer l; Token t. �����l.token == t && t.type =...
	8. spec.benchmarks._205_raytrace.Point p; ����spec...
	9. spec.benchmarks._201_compress.Compressor z; ���...
	10. spec.benchmarks._201_compress.Input_Buffer z; ...
	11. Test5 z. ����z.x % 2 == 0
	Table�12.�� Benchmark queries with non-empty resul...

	4.7� On-the-fly Debugging
	Figure�31.�� On-the-fly debugging instrumentation
	4.7.1� Alternative Implementations
	1. Compress
	2. Jess
	3. Db
	4. Javac
	5. Mpegaudio
	6. Jack
	7. Ray tracer
	8. Decaf
	9. Ideal gas tank
	10. Microbenchmark
	Table�13.�� On-the-fly debugging overhead

	4.7.2� Experimental Results
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. ������z.x == z1.x &...
	14. Lexer l; Token t. ������l.token == t && t.type...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1.����� th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�14.�� On-the-fly query overhead

	4.8� Related Work
	4.9� Summary

	5 Query Analysis and Classification
	5.1� Introduction
	5.2� Queries in Software Systems
	5.2.1� Networks
	5.2.1.1� Simulation of a Cellular Communication Ne...
	5.2.1.2� Token-Based Network

	5.2.2� Graphical User Interfaces
	5.2.2.1� The Self Graphical User Interface
	5.2.2.2� Graphical Object Properties
	5.2.2.3� SPECjvm98 Ray Tracer

	5.2.3� Programming Systems
	5.2.3.1� Self Virtual Machine
	5.2.3.2� Understanding the Cecil Compiler
	5.2.3.3� Javac Compiler
	5.2.3.4� Decaf Compiler
	5.2.3.5� Jess Expert System

	5.2.4� Games and Simulations
	5.2.4.1� Tic-Tac-Toe
	5.2.4.2� Chess
	5.2.4.3� Ideal Gas Simulation

	5.2.5� Resource Management Systems
	5.2.5.1� Views and Users
	5.2.5.2� Room Scheduling System
	5.2.5.3� Process and Resource Simulation
	5.2.5.4� Airline Plane Routing Service

	5.2.6� Miscellaneous Programs
	5.2.6.1� VLSI Layout Programs
	5.2.6.2� Java Animator
	5.2.6.3� SPECjvm98 Compress

	5.2.7� Query Summary
	Table 15: Query examples

	5.3� Query Classification
	Table 16: Query patterns

	5.4� Query Analysis and Classification Conclusions...
	5.5� Summary

	6 Future Work and Open Problems
	6.1� Automatic Change Sets
	6.1.1� Automatic Change Sets for Method Invocation...
	6.1.2� Reference Chains

	6.2� Safe Reevaluation and Distributed Debugging
	6.2.1� Safe Reevaluation
	Figure�32.�� Inconsistent list state
	Figure�33.�� Inconsistent intermediate list state

	6.2.2� Distributed Query-Based Debugging

	7 Conclusions
	8 Glossary
	9 References
	[1] Abiteboul, S., Hull, R., Vianu, V., Foundation...
	[2] Abiteboul, S.; Kanellakis, P.C., Object identi...
	[3] Acharya, A., Scalability in Production System ...
	[4] Adl-Tabatabai, A.-R., Langdale G., Lucco S., a...
	[5] Agesen, O., Bak, L., Chambers, C., et al. The ...
	[6] Agesen, O., Concrete Type Inference: Deliverin...
	[7] Agesen, O., Freund, S.N., and Mitchell, J.C. A...
	[8] Agrawal, D., El Abbadi, A., Singh, A.K., Yurek...
	[9] Agrawal, H., Horgan, J.R., Dynamic Program Sli...
	[10] Agrawal, R., Gehani, N.H., ODE (Object Databa...
	[11] Aho, A.V., Hopcroft, J.E., Ullman, J.D. The D...
	[12] Aho, A.V., Sethi R., Ullman J.D., Compilers: ...
	[13] Alexandrov, A., Ibel, M., Schauser, K., and S...
	[14] Anderson E., Dynamic Visualization of Object ...
	[15] Anwar, E., Maugis, L., Chakravarthy, S., A Ne...
	[16] Arnold, K., Gosling, J., The Java Programming...
	[17] Asprin R., The Myth-ing Books: Another Fine M...
	[18] Baecker, R., DiGiano, C., Marcus, A., Softwar...
	[19] Banerjee, J.; Kim, W.; Kim, K.-C., Queries in...
	[20] Baralis E., and Widom, J., Using Delta Relati...
	[21] Beeri, C., Milo, T., A Model for Active Objec...
	[22] Beguelin, A., Dongarra, J., Geist, A., Sunder...
	[23] Berk E., JLex: A Lexical Analyzer Generator f...
	[24] Bertino, E., Guerrini, G., Extending the ODMG...
	[25] Bischofberger, W. R., Kofler, T., Schäffer, B...
	[26] Blakeley, J.A.; Larson P.-A.; Tompa F. Wm.; E...
	[27] Bourdoncle, F. Abstract Debugging of Higher-O...
	[28] Brant, D.A., Grose, T., Lofaso, B., Miranker,...
	[29] BrightWare, ART*Enterprise, http://www.bright...
	[30] Bronnikov, D., Java 1.1 grammar, version 1.03...
	[31] Brown, M.H., Exploring Algorithms Using Balsa...
	[32] Brown, M.H., Zeus: A System for Algorithm Ani...
	[33] Brownston, L., Farrell, R., Kant, E., Martin,...
	[34] Buneman, O.P.; Clemons E.K., Efficiently Moni...
	[35] Cardelli L., Wegner P., On Understanding Type...
	[36] Cargill, T.A; Locanthi, B.N.; Cheap Hardware ...
	[37] Cattell, R.G.G., edited by, The Object Databa...
	[38] Chambers. C. Cecil language: specification an...
	[39] Chambers, C., Ungar, D., Lee, E., An Efficien...
	[40] Chandra, A.K., Merlin P.M., Optimal Implement...
	[41] Chang, B.-W., Ungar, D., Smith, R. B., Gettin...
	[42] Cluet S., Moerkotte G., On the Complexity of ...
	[43] Cohen, G.A., Chase, J.S., and Kaminsky, D.L. ...
	[44] Consens, M. P., Hasan M.Z., Mendelzon A.O., D...
	[45] Consens, M.; Mendelzon, A.; Ryman, A., Visual...
	[46] Coplien, J.O., Supporting truly object-orient...
	[47] Cox, K. C.; Roman G.-C.; Experiences with the...
	[48] Dahl, O., and Nygaard, K., Simula: An Algol-b...
	[49] Detlefs D., Dosser A., Memory Allocation Cost...
	[50] De Pauw, W.; Helm, R.; Kimelman, D.; Vlisside...
	[51] De Pauw, W.; Kimelman, D.; Vlissides, J. Mode...
	[52] De Pauw, W.; Lorenz, D.; Vlissides, J.; Wegma...
	[53] De Witt, D..J., Katz, R.H., Olken, F., Shapir...
	[54] Diaz, O., Paton, N., Gray, P., Rule Managemen...
	[55] Doorenbos, R.B., Production Matching for Larg...
	[56] Duncan, A., Hölzle, U.; Adding Contracts to J...
	[57] Duncan, A., Hölzle, U.; Load-Time Adaptation:...
	[58] Eisenstadt, M., My Hairiest Bug War Stories, ...
	[59] Eisenstadt M., Tales of Debugging from The Fr...
	[60] Eisenstadt M., Why Hypertalk Debugging Is Mor...
	[61] Eisenstadt M., Price B. A., Domingue J., Soft...
	[62] Flanagan, C., Flatt, M., Krishnamurthi, S., W...
	[63] Forgy, C.L., OPS5 User’s Manual, Technical Re...
	[64] Forgy, C.L., RETE: A fast algorithm for the m...
	[65] Forgy, C.L., RAL/C and RAL/C++: Rule-based ex...
	[66] Fowler, M., Scott, K., UML Distilled: Applyin...
	[67] Gamma E., Design Patterns Elements of Reusabl...
	[68] Gamma E., Helm R., Johnson R., Vlissides J. D...
	[69] Gamma E., Weinand A., Marty R., Integration o...
	[70] Garey M.R., Johnson D.S., Computers and Intra...
	[71] Gehani N.H. and Jagadish H. V. Ode as an Acti...
	[72] Gehani, N.H., Jagadish, H.V., Shmueli, O., Ev...
	[73] Gill, S., The diagnosis of mistakes in progra...
	[74] Golan, M.; Hanson, D.R. Duel-a very high-leve...
	[75] Gold, E.; Rosson, M.B., Portia: an instance-c...
	[76] Goldberg, A., Smalltalk-80: The Interactive P...
	[77] Goldberg, A.; Robson, D.; Smalltalk-80: The L...
	[78] Gosling, J., Joy, B., Steele, G., The Java La...
	[79] Haas, P.J.; Naughton, J.F.; Seshadri, S.; Swa...
	[80] The Haley Enterprise, RETE++ and Eclipse, htt...
	[81] Hanson, E.N., Rule Condition Testing and Acti...
	[82] Hart D., Kraemer E., Roman G.-C., Interactive...
	[83] Hart D., Kraemer E., Roman G.-C., Interactive...
	[84] Hao, M.C.; Karp, A.H.; Waheed, A.; Jazayeri, ...
	[85] Henry, R. R., Whaley, K. M., Forstall B., The...
	[86] Hölzle, U.; Chambers, C., Ungar, D., Debuggin...
	[87] Hölzle, U., A Fast Write Barrier for Generati...
	[88] Hölzle, U., Adaptive Optimization for Self: R...
	[89] Hölzle, U.; Ungar, D., Reconciling Responsive...
	[90] Horn, B. Constraint Patterns as a Basis for O...
	[91] Hudson, S.E., CUP Parser Generator for Java, ...
	[92] Hyrskykari A., Development of Program Visuali...
	[93] Ibaraki T., Kameda T., On the Optimal Nesting...
	[94] ILOG, ILOG Rules, White Paper, http://www.ilo...
	[95] Ioannidis Y. E., Kang Y. C., Left-deep vs. Bu...
	[96] Ioannidis Y. E., Kang Y. C., Randomized Algor...
	[97] Jarke, M., Koch, J., Query Optimization in Da...
	[98] JavaTM Platform Debugger Architecture, http:/...
	[99] JavaTM 2 SDK Production Release, http://www.s...
	[100] James, J., The Kan Project—Reliable Concurre...
	[101] Jerding, F.J., Stasko J.T., Using Visualizat...
	[102] Jerding, D.F., Stasko, J.T., Ball, T., Visua...
	[103] Jones R., Lins R., Garbage Collection�Algori...
	[104] Kamkar, M., An Overview and Comparative Clas...
	[105] Karaorman, M., Hölzle, U.; Bruno, J.; jContr...
	[106] Keller, R., Hölzle, U.; Binary Component Ada...
	[107] Keller, R., Hölzle, U.; Implementing Binary ...
	[108] Keppel, D., Fast Data Breakpoints. Technical...
	[109] Kessler, P., Fast Breakpoints: Design and Im...
	[110] Khoshafian, S. N., Copeland, G. P., Object I...
	[111] Kimelman D., Rosenburg B., Roth T., Strata-V...
	[112] Kishon, A., Hudak, P., Consel, C., Monitorin...
	[113] Krishnamurthy, R., Boral, H., Zaniolo, C., O...
	[114] Kulkarni, S., Distributed Debugging, http://...
	[115] Laffra C., Advanced Java: Idioms, Pitfalls, ...
	[116] Laffra C., Malhotra A., HotWire: A Visual De...
	[117] Lange, D.B., Nakamura Y. Program Explorer: A...
	[118] Lange, D.B., Nakamura Y. Object-Oriented Pro...
	[119] Lange, D.B., Nakamura Y. Interactive Visuali...
	[120] Lange, D.B., Nakamura Y. Object-Oriented Pro...
	[121] Lehman, T.J., Carey, M.J., Query Processing ...
	[122] Lencevicius, R.; Hölzle, U.; Singh, A.K., Hi...
	[123] Lencevicius, R.; Hölzle, U.; Singh, A.K., Qu...
	[124] Lencevicius, R.; Hölzle, U.; Singh, A.K., Dy...
	[125] Liang, S., Bracha, G.; Dynamic Class Loading...
	[126] Lieuwen, D., Gehani, N., and Arlein R., The ...
	[127] Lindholm, T., Yellin, F., The JavaTM Virtual...
	[128] Litman D.; Mishra A.; Patel-Schneider P.F., ...
	[129] Maloney J., Morphic: The Self User Interface...
	[130] McCarthy, D. R., Dayal, U., The Architecture...
	[131] McHugh, J.A. Algorithmic Graph Theory, Prent...
	[132] Meyer B., Object-oriented Software Construct...
	[133] Meyer B., Applying Design by Contract, IEEE ...
	[134] Meyer B., Eiffel: The Language, Prentice-Hal...
	[135] Mishra, P., Eich, M. H., Join Processing in ...
	[136] Mitchell, G., Dayal, U., Zdonik, S.B., Contr...
	[137] Mössenböck, H., Films as graphical comments ...
	[138] Myers, A.C., Bank, J.A., and Liskov, B. Para...
	[139] Nishimura, S.; Ohori, A.; Tajima, K., An equ...
	[140] Noble J., Groves L., Biddle R., Object Orien...
	[141] Noble R. J., Groves L.J., Tarraingim - A Pro...
	[142] Oflazer, K., Partitioning in Parallel Proces...
	[143] OST, Source vs. Object Level Debugging, Obje...
	[144] Price B.A., Baecker, R.M., and Small, I.S. A...
	[145] Production Systems Technologies, OPSJ, RETE ...
	[146] Roman G.-C., Cox K.C., A Taxonomy of Program...
	[147] Roman, G.-C. et al., Pavane: A System for De...
	[148] Roman G.-C.; Cox, K. C.; Wilcox, C.D.; Plun,...
	[149] Sefika M., Design Conformance Management of ...
	[150] Sefika M., Campbell R.H., An Open Visual Mod...
	[151] Sefika M., Sane A., Campbell R.H., Architect...
	[152] Sefika M., Sane A., Campbell R.H., Monitorin...
	[153] Selinger, P. G., Astrahan, M. M., Chamberlin...
	[154] Shaw, G.M.; Zdonik, S.B., A query algebra fo...
	[155] Shilling J.J, Stasko J.T., Using Animation t...
	[156] Smith, R.B.; Maloney, J.; Ungar, D. The Self...
	[157] Smith, R.B., Wolczko, M., Ungar, D., From Ka...
	[158] Standard Performance Evaluation Corporation,...
	[159] Stasko, J., TANGO: A Framework and System fo...
	[160] Steinbrunn, M., Moerkotte, G., Kemper, A., O...
	[161] Stonebraker, M., Implementation of Integrity...
	[162] Swami, A., Optimization of Large Join Querie...
	[163] Swami, A., Gupta A., Optimization of Large J...
	[164] Swami, A., Iyer, B., A Polynomial Time Algor...
	[165] Sweet, R.E., The Mesa Programming Environmen...
	[166] Swineheart, D.C., Zellweger, P.T., Hagmann, ...
	[167] Takahashi, S., Matsuoka, S., Miyashita, K., ...
	[168] Tekinay S., Jabbari B., Hand-over and Channe...
	[169] Tip, F., A survey of program slicing techniq...
	[170] Ullman, J.D., Principles of Database Systems...
	[171] Ullman, J.D., Principles of Data and Knowled...
	[172] Ullman, J.D., Widom J., A First Course in Da...
	[173] Ungar, D. M., Generation scavenging: A non-d...
	[174] Ungar, D. M., Chambers, C., Chang, B.-W., Hö...
	[175] Ungar, D. M., Chambers, C., Chang, B.-W., Hö...
	[176] Ungar, D., Lieberman, H., Fry, C., Debugging...
	[177] Ungar, D., Smith, R.B., Self: The Power of S...
	[178] Vion-Dury J.-Y., Santana M., Virtual Images:...
	[179] Wahbe R., Efficient Data Breakpoints. Procee...
	[180] Wahbe R., Lucco S., Graham S.L., Practical D...
	[181] Wahbe R., Lucco S., Anderson, T.E., Graham S...
	[182] Walker, R.J., Murphy, G.C., Freeman-Benson, ...
	[183] Weinand, A.; Gamma, E. ET++-a portable, homo...
	[184] Weiser, M., Program slicing. In: 5th Interna...
	[185] Weiser, M., Program Slicing. IEEE Transactio...
	[186] Weiser, M., Programmers Use Slices When Debu...
	[187] Welch I. and Stroud R., Dalang�—�A Reflectiv...
	[188] West, A. Animating C++ Programs, Objective S...
	[189] Widom, J., Cochrane R.J., and Lindsay B. Imp...
	[190] Widom J. and Finkelstein S.J. Set-Oriented P...
	[191] Widom J. The Starburst Active Database Rule ...
	[192] Wilson, P.R., Uniprocessor Garbage Collectio...
	[193] Wilson, P.R.; Moher, T.G. Demonic Memory for...
	[194] Wong, E., Youssefi, K., Decomposition - A St...
	[195] xDuel, http://www.math.tau.ac.il/~frangy/, c...
	[196] Zeller A., Lütkehaus D. DDD—A Free Graphical...
	[197] Zhuge, Y., Garcia-Molina, H., Hammer, J., an...
	Appendix�A Generalized Graph Matching
	Figure�34.�� Subgraph corresponding to clause Cj i...

	Appendix�B Detailed Data
	Table�17.�� Field assignment frequency in SPECjvm9...
	Table�18.�� Breakdown of query overhead
	Table�19.�� Execution times, overhead times, and i...
	Table�20.�� Results for evaluations with no fast s...
	Table�21.�� Non-incremental evaluation results
	Table�22.�� Predicted slowdown

