Query-Based Debugging

UNIVERSITY OF CALIFORNIA
Santa Barbara

A dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy in Computer Science
by Raimondas Lencevicius

Technical Report TRCS 99-27

Committee in charge:

Professor Urs Holzle, co-chair
Professor Ambuj Kumar Singh, co-chair
Professor Anurag Acharya
Professor Teofilo Gonzalez
Professor Martin Rinard
Professor Jianwen Su

August 1, 1999

The dissertation of Raimondas Lencevicius is approved:

Professor Anurag Acharya

Professor Teofilo Gonzalez

Professor Martin Rinard

Professor Jianwen Su

Professor Ambuj Kumar Singh, co-chair

Professor Urs Holzle, co-chair

June 1999

June 4, 1999

Copyright by
Raimondas Lencevicius

1999

Acknowledgments

The only thing more reliable than magik is
one’s friends,
MacbetH

Six years spent at the University of California, Santa Barbara is a long time period, and | can
only hope to thank most of the people who influenced me over these years. First of all, | want
to express my gratitude to my advisors. Dr. Ambuj Kumar Singh invited me to his research
group and supported me in every way even when | changed my research direction in
midstream. He continued to provide invaluable ideas and critique about my thesis research.
Although sometimes our exchanges were as heated as these of a teenager and his parent,
Ambuj always found a way to understand me and help me in my research. Dr. Urs Hdlzle
proposed the idea for my thesis project and continued to help with keen insights and guru-like
implementation techniques. | continue to be amazed with Urs’s knowledge of systems and
their implementation methods, as well as his relentless work on the optimization of object-
oriented systems. | want to thank all the members of the OOCSB group and the distributed
systems laboratory for comments and discussions on both computer science and EI Nino.

My main influence outside the UCSB walls was the keen-eyed teaching of Dae Soen Sa Nim
(Zen Master Seung Sahn) and all the teachers and students of the Kwan Um School of Zen.
They helped me to discover what this life is all about, and what is my direction in it. Thanks

Ji Bong Soen Sa, Paul Park JDPSN, Jeff Kitzes JDPSN, Soeng Hyang Soen Sa, Jane
McLaughlin-Dobisz JDPSN, Morgan Riley, Paul Lynch, Julia Murakami, Bridget Duff, Tim
Colohan, Joel Feigin, Mu Sang Sunim, Mu Ryang Sunim, Adam Cherensky, Jacob Newell,
Dove Woeltjen, Agne Talmantaite. Thanks brothers and sisters, and may you all attain
enlightenment and save all beings from suffering.

My deep gratitude extends to my family and friends who nudged, pushed or simply stayed
with me over the years preceding the UCSB and during the studies here. My mother always
remained a pillar of strength and understanding. We did not always agree, but we always
stayed close and supported each other through the radical changes of life here and in
Lithuania. I'll always remember my grandmother who died after | left Lithuania for all her
kindness in raising me. My father had the vision to direct me into the discipline of computer
science and to encourage me to pursue graduate studies at the UCSB. Dr. Jonas Zmuidzinas
helped me with the graduate application process and my first months of life in the USA. My
landlady Ingeborg Comstock provided a warm German home in Goleta together with
companionship in watching movies and arguing about the meaning of life. | lived and
breathed my graduate life together with the branch-prediction genius, poet and photographer
extraordinaire, the friend who understood me better than | did myself—Dr. Karel Driesen.

1 Unless otherwise noted, all quotes at the beginning of chapters are from “The Myth Books” by Robert Asprin [17]

Finally, | want to thank all the people whom | met at my various extracurricular activities:
Steve Ota Sensei, Peter Slaughter, Claudia Tyler, Michael Little, Faina Khait, Belinda
Braunstein, and all Aikido students; Ken Ota Sensei, Ginger Gelhaus, Fascinating Rhythm
Dance Center teachers, and all my ballroom dance partners; Maciej Jesmanowicz—movie
buff, programming wizard, and bright Polish soul; Dr. Jan Frodesen and Dr. Janet Kayfetz—
two ESL teachers not only perfect in their work, but also in their appreciation of student
written fiction and non-fiction; merry folks from SCA and especially lady Isabel D'Triana for
all the medieval fun; Douglas Chang for our discussions on growth versus value.

Vita

Personalia

Surname: Lencevicius

Given names: Raimondas

Place of Birth: Kaunas, Lithuania

Date of Birth: September 7, 1969

Nationality: Lithuanian

Address: Department of Computer Science
University of California Santa Barbara
CA 93106
USA

Telephone: (1-805) 893-4178

Fax: (1-805) 893-8553

E-mail: raimisl@cs.ucsb.edu

URL: http://www.cs.ucsb.edu/~raimisl

Education

Diploma in Applied Mathematics (Vilnius University, Lithuania, June 1992)
Thesis: “3D graphics system prototype for Microsoft Windows”

Experience

Research Assistant. Department of Computer Science, University of California, Santa Barbara.
1994—~Current:
Query-based debugging of object-oriented programs.
Aggregation and design patterns in object-oriented systems.

Teaching Assistant. Department of Computer Science, University of California, Santa Barbara.

1993—~Current:
Taught discussion sections in lower and upper division undergraduate courses.

Programmer Aide. Laboratory of Infrared and Submillimeter Astronomy, California Institute of Tech-

nology. June 1994—September 1994.
Implemented X Windows graphical interface for custom data acquisition hardware. Cooperated
in developing data conversion programs between Sybase SQL database and custom astronomic

data.

Programmer. ImPro Ltd., Vilnius, Lithuania. January 1992—-August 1993.
Applications development for graphics and futures trading systems. Developed 2D and 3D
graphics systems and utilities using OO techniques in a team environment. Implemented futures
trading system based on personal research on neural networks.

Computer Science Graduate Student Association Officer, Facilities Committee Representative,
September 1997—Current.

Vi

Publications

“Query-Based Debugging of Object-Oriented Programs,” Raimondas Lencevicius, Urs Holzle, and
Ambuj K. Singh. InProceedings of the 2Annual Conference on Object-Oriented Program-
ming, Systems, Languages, and Applicati@B®PSLA97), pp. 304-317, Atlanta, GA, October
1997, Published as SIGPLAN Notices 32(10), October 1997.

“Dynamic Query-Based Debugging,” Raimondas Lencevicius, Urs Holzle, and Ambuj K. Singh. In
Proceedings of the I8 Annual European Conference on Object-Oriented Programming
(ECOOP’99), Lisbon, Portugal, June 1999, Published as Lecture Notes on Computer Science
1628, Springer-Verlag, 1999.

“Fault Tolerance Bounds for Memory Consistency,” Jerry James, Raimondas Lencevicius and Ambuj
K. Singh. Submitted for publication.

Vi

Abstract

Object relationships in modern software systems are becoming increasingly numerous and
complex. Program errors due to violations of object relationships are hard to find because of
the cause-effect gap between the time when an error occurs and the time when the error
becomes apparent to the programmer. Although debugging techniques such as conditional
and data breakpoints help to find error causes in simple cases, they fail to effectively bridge

the cause-effect gap in many situations. Programmers need new tools that allow them to
explore objects in a large system more efficiently and to detect broken object relationships

instantaneously.

Many existing debuggers present only a low-level, one-object-at-a-time view of objects and
their relationships. We propose a new solution to overcome these problems: query-based
debugging. The implementation of the query-based debugger described here offers
programmers an effective query tool that allows efficient searching of large object spaces and
quick verification of complex relationships. Even for programs that have large numbers of
objects, the debugger achieves interactive response times for common queries by using a
combination of fast searching primitives, query optimization, and incremental result delivery.

Dynamic query-based debuggers extend query-based debugging by providing instant error
alerts. In other words, they continuously check inter-object relationships while the debugged
program is running. To speed up dynamic query evaluation, our debugger (implemented in
portable Java) uses a combination of program instrumentation, load-time code generation,
guery optimization, and incremental reevaluation. Experiments and a query cost model show
that selection queries are efficient in most cases, while more costly join queries are practical
when query evaluations are infrequent or query domains are small.

We thus demonstrate that query-based debugging is a useful method that can be efficiently
implemented and effectively used in program debugging.

viii

Table of Contents

1 T 10 To 18Tl 1 o] o [N S P 1

1.1 Problem Statement and MOLIVALIONooiiiiiiiiiiiii e 2
1.2 CONEIDULIONS ...ttt e e e e e e e et e e e e e e e e e e e e nnnreeeees 2.

1.3 OVBIVIBW ..ttt ettt ettt e e e e e e e st b ettt e e e e ae e e e e s e nebabeeeeeeeaeeeeesannnannneees 4.

2 Debugging—Background and Related WOIKcooiiiiiiiiiiiiiee e 5
21 CoNtrol FIOW DEDUGGING ..cueveiiieiiiiiiie ettt ettt e et e s sbbr e e nnnnneee s 6
211 Breakpoints and Single SIEPPING ...coooiiriiiiiiiii e 6
2.1.2 Conditional Breakpointscccuiiiiiiiiiiee s e e 7
2.1.3 [T g T [0 =T L= O 0] o 1] (U Tox £ 7
214 Breakpoints and TeStNG COUEcooiiiiiiiiiiiiiiie et 8
2.15 Method Call ANIMEALIONooiiiiii et a e e e 8
2.2 Data ODSEIVALIONccoiiiiiiiiiiiiieeeee et e e e e e et e e e e e e e e s e s snebebaeeeeeas 9.......
221 MEMOIY INSPECTION ...eeiiiiiiiiie ittt et e e e e e anes 10
2.2.2 Data Structure Display TOOIScccoiiiiiiiiiiiiiieee e e e e e s e e e e e e e e e enanes 10
2.2.3 Data Filtering and SUMMary TOOISc.cooiiiiiiiiiiiiec e 11
2.3 MiXEA CONSITUCES .ttt ettt e e e e e e e s e e e e eeeeee e 11.......
23.1 Data BreakPOiNntSoceeiiiieieiie ettt e aaans 11
23.2 Program SHCINGeeeieiiiiiie et e b s e e 12
24 Program Visualization SYSIEIMSouuiiiiiiiiiiee e 12
2.5 YU] 4= T Y 13....

3 Static Query-Based DebUQJQINGcouiiiiiiiiiiiiiii e 15
3.1 1] o [N Tt o] o E PP 15..

3.2 L@ U= V1Y, o T [SRR 16.....
3.2.1 ASSUMPLIONS ...ttt e e e e e e e e e e e e e e e s et bbb e e e e e e aeeeaaeas YA 1
3.2.2 DISCUSSION ...ttt ettt ettt e e e e e e e e s e aab bbb e e e e e aaaeeeesaannres 18........
3.2.3 EXAMPIES oo 20........
3.23.1 The Self Graphical User INterfaceoocvviiiiiiiiiiiiiiiee e 20
3.2.3.2 Understanding the Cecil COMPIIEToocvveeiiiiiiec e 21
3.3 g1 0] (=T 0 g T=T] r= L4 o) o 22.......
3.31 General Structure of the SYSIEM ... 23
3.3.2 Enumerating All Objects in @ DOMAINoeiiiiiiiiiiiiiie e 26
3.3.3 Overview of QUETY EXECULIONc.uviiiiiiiiiiiee ittt 27
3.34 JOIN OFAEING .eeeeeieiiiieee et e et e e e s abbeeee e S 2
3.35 Maximum-Selectivity HEUISHICeuviireeeiiiiiiiieeee e 29
3.3.6 HASH JOINS ..t st e e s ean 30........
3.3.7 INCreMENTAl DEIIVEIYooveeeeeiiiiiie et s e e e e e e aeas 32
3.3.8 REIAIEA WOTK ...t a e e e e e 33
3.4 EXperimental RESUILScooiiiiiiiii e Ao 3
341 Benchmark QUETIESceiiiieeeiei ittt e e e e e e e e et r e e e e e e e e e s e e annennes 34
3.4.2 o 11T] o 1 I o 1= PRSPPI 36

3.4.3
3.4.4
3.45
3.5
3.6

4.1
4.2
42.1
4.3
43.1
4.3.2
4.3.3
4.3.4
4.3.5
435.1
4.3.5.2
4.3.6
43.6.1
4.3.6.2
4.3.7
4.4
44.1
442
443
443.1
4.4.3.2
4.4.3.3
4.5
45.1
4.6

4.7
4.7.1
4.7.2
4.8

4.9

5.1
5.2
521
5211
52.1.2
5.2.2

B Lo} ¢ @ o [T | T U Lovornnnn 3

INCremMENtal DEIIVEIY ...t e e e e e e 38
HASH JOINS .ot e e e e e eeeaas 39........
Related WOTKoeeiieeeeiiieciieeee e e e e e seneeeeeeeee e e s e s snnnnnnnneeees s D1l
YU] 4= T Y 41....
Dynamic Query-Based DEDUGQEToiuiiiiiiiiiiie ittt 43
1] o [N Tt o] o E PPN 43..
Query Model and EXAMPIEScceeeeiiiiiiiiieiiee e e e 44
Ideal Gas Tank EXAMPIEcooiiiiiiii e 45
IMPIEMENTALION ..o e e iereeneeeee e e e BB
General Structure of the SYSIEMeiiiii e 46
Java Program INSIrUMENatioNeeiiiiiiiiiiniiiiie e 47
(O =T oo T= TN\ (o 71 1o] o R PR 50
Domain Collection MaiNtENANCEeiveiiiiiiiee it 51
Overview of QUENY EXECULIONuuueiiiiiie i e e 52
Incremental REEVAIUALIONoooiiiiiiiiiiiee e 53
Custom Code Generation for Selection QUENESueeevveieeiiiiiiiiiiiiiiieeeaeeenn 54
== L= T0 IR o PR 55
Runtime Information Gathering Techniquescccccvieeveeee e, 55
Load-Time Code INStrUMENtAtIONccueeeeiiiiiiiee e 57
Dynamic Query Debugger Implementations for Other Languagesccccuveeeen. 59
Experimental RESUILSooiiiiiiiiiieieeee e Q... 6
BenChmMark QUETIESeiiiiiieiiii ittt e e e e et e e e e e e e e e s e e enneeees 62
EXECULION TIMIE oeeiiiiiie ettt e e e e e e e s e e e e e e e e e e sannnnreneneenaaeeens 63
(0] 0111101 2= 1 1[0] 1SR S 6
Incremental REEVAIUALIONocuuiiiiiiiiiiie e 67
Custom Generated Selection COdecccuuiiiiiiiiiiii e 67
Same Value ASSIGNMENT TESToooiiiiiiiieiiee e 68
Performance MOUEI ...t e e 9. 6
Debugger INVOCation FIEQUENCYccoiiiiiiiiiiiiiiiee ettt 70
Queries With Changing RESUILScoeeiiiiiiiiiie e e e e 73
(@B (oY= VA 1= o0 T [11 o SRR 75
Alternative Implementations ...t 77
EXperimental RESUILScooiiii ittt e e e e e e e e 77
REIAIEA WWOTK ...eeiiiiieiie ittt e e e e e e e s et e e e e e e s 80.....
SUMIMIATY ettt e e e e e e e e e e ettt e e e e e e s e s e e e e e e e e e e e s nnnee s s 82....
Query Analysis and ClasSifiCaAtIONcoiuiiiiiiiiiiii e 85
T 10T [1o o) o S 85..
Queries IN SOftWAre SYSEMScoiiiciiiiiieir e e e e e e e e s s e nnrrnaeees 85
NEIWOIKS .eeeiiieiite ettt e e e st e e s st e e e e annbaeeeeennnren 86........
Simulation of a Cellular Communication Network.ccccccceiiiiiiiiiiinnen, 86
TOKEN-BasSed NEWOIKcooiiiiiiiiiiiiieii ettt e e e e e e e 86
Graphical USEr INEITACESeeiiiiiiiiiieiie et 87

5.2.2.1 The Self Graphical User INtErface ...t 87
5.2.2.2 Graphical ODJECt PrOPertiesceuiiiiiaiiiiiiiieiee e 88
5.2.2.3 SPECIVMO8 RAY TTACET ..ceeiiiiiiiieiitiiiee ittt ee ettt e et e et e et e e e e s nnbneeeeeans 88
5.2.3 Programming SYSIEIMSueiiiiiiiiiie ettt e e e e sbbe e e e e 89
5.2.3.1 Self Virtual MaChINEoiiiiiiiiiii e 89
5.2.3.2 Understanding the Cecil COMPIIETcovviieiiiiiiieec e 90
5.2.3.3 JAVAC COMPIIET i e e e e eeeeeeas 91
5.2.34 Decaf COMPIIET ...t e e e e e e e 91
5.2.35 JESS EXPEIT SYSIEIM oot 91
524 Games and SIMUIALIONSueiiiiieeiei e e e e e e e e s e erreeeeaeeeesennnes 91
5.24.1 LI LON = Lo Lo TSRS 92
5.2.4.2 CRESS i 2 9
5.24.3 [deal Gas SIMUIALIONoooiiiiie e 92
525 Resource Management SYSIEMSuuue it 92
5251 VIEBWS AN USEIS ...ttt ettt e e e ettt e e e e e e e e s e e s b a e eeeeeaaeeeeas 93
5.2.5.2 R0OOM ScheduliNng SYSIEMcoiiiiiiie e 93
5.2.5.3 Process and Resource Simulation ..o 93
5.2.5.4 Airline Plane ROULING SEIVICEuuuiiiiiieeeiiiiiiiiiieiie e e e e e s s sieree e e e e e e e e s e e snannees 94
5.2.6 MiSCellan@ouS PrOogramscoooiiiiiiiiiiiiiiieiire s ss s e aeaeaeaneaerarananas 94
5.2.6.1 VLS| LAYOUL PIrOQIaIMS ...oeeiiiiiiiiiiae e e ettt eeeeeae et e e e e e e 94
5.2.6.2 T 1Yz B AN g 1 0= 1o] S TP PPPRURPR 94
5.2.6.3 SPECIVMO8 COIMPIESSuvtiiiieiiiiiite ettt ee ettt e ettt e e s sttt e e s asbe e e e s s snnbe e e e e e eenes 95
5.2.7 L0 01T oS YU 1101 0 = Y/ 96
5.3 QuErY ClasSIfICAtIONceceeiiiiiiiiieeie e e e e e e e e e e e e e e annenes 0....... 10
5.4 Query Analysis and Classification CONCIUSIONScoooeeiiiiiiiiiiee 102
55 SUIMIMABIY ...ttt e e e e e e e e e e e e e e e ettt et eeeeeeebebebbbbbaa e s e e e e e e e e e e eeeees e 103....

6 Future Work and Open ProbIEMSeeiiiiiiiieee ettt 105
6.1 AULOMALIC ChANQE SIS ...t e e e e e e e e bbb aeeeaaaaa s 105
6.1.1 Automatic Change Sets for Method INVOCAtioNSceeeeeiiiiiiiiiiiiiiiee e 106
6.1.2 REfErenCe ChaiNSccooiiiieee e e e e e e e e eeeeeaee s 108
6.2 Safe Reevaluation and Distributed DebUQQINGvvvevrrreeeiiiiiiiiieiieeeee e 108
6.2.1 Safe REEVAIUALIONcoiiiiiiiiii ettt e st e e st e e e e s snbaeeeeeanes 109
6.2.2 Distributed Query-Based Debuggingceeeeiiiiiiiiieeieeeeeeeeceeeeeeeeeve 111
7 (©70] o3 1013 o] o - PSPPSR 113

8 1] 0TS TT= OO 115

9 = (=T 1T o = 117
Appendix A Generalized Graph MatChingcoocuuiiiiiiii e 129
Appendix B Detailed Dataccc.eveiiiiiiiiaaae e e 133.....

Xi

List of Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 9.
Figure 8.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.

g o) g F= Y= Vo NS 3 2
Error in GUI PrOGIaIM ..ottt e e e e s e e e e aeneas 5
[0] T =AYz Vo N SRR 6
INCONSISTENT lISt STALE ...eeiiiiiiiiie e 18.......
S MOIPNS e —— 20.....
Query-based debugger GUIoooiiiiiiee st e e 23
Overview of the query-based debugger ..., 24
Data structures of the intermediate form of a qUerycccccoviiii 24
Query evaluation PSEUAO-COUE..........ueiiiiiiiiiie ettt 25
OVerview Of QUEIY EXECULIONccceiiiiieeii e e e e e e e s e e e e e e e e s s s rr e e e e ee e e s e e annnenes 27
Y o [T oY o I o T o U 29....

[= T 1 T 1 31.
Incremental delivery Pipeline...... ..o 33
QUETY EXECULION TIMES .. .eeeiiieiiiiiie ettt e et e e s e e e e neees 36
Completion time depending on join ordering (small qUErIES)cccveeiriiieeernninnen. 38
ErTOr iNAVAC AST .ooviiiititiiiiiie i et e et e e e e e e et et ettt ettt se s e s e e eeaeeaeaeaeeseseesesesseees 43
Error in molecule SIMUIAtION..........cooiiiiiie e 45
Data-flow diagram of dynamic query-based debugger...........ococuiiiiiiiiiiiiiniiiinee 46
Java program iNStrUMENTALIONuuiiiiiiiiiie e 48
Control flow Of QUENY EXECULIONoueiiiieiiiiie e 52
Incremental qUEry eValUALION..........oocuuiiiiiiiiie e 54
Selection evaluation USING CUStOM COUEcuvviiiiiiiieee e 54
Modifying a VM t0 implement LTA. ..o e e e e e s 57
Performing LTA with a custom class loader.ooovvvviviiiiiiiiiccre e, 58
Implementing LTA by intercepting system callS. ... 59
Implementing LTA using dynamic liNKiNg...........ccooiiiiiiiiieeee e 59
Program slowdown (queries 15—20 N0t SNOWN).......c.coviiiiiiiiiiiiiiee e 64
Breakdown of query overhead as a percentage of total overhead................ccceeeeeee.. 64
Field assignment frequency in SPECIVMO8...........ccocciiiiiiiiiieee e a e 71
Predicted SIOWHOWNuiiiiiiiiiiei e L. 7
On-the-fly debugging INStrUMENtatioN ..o 76
INCONSISTENT TSt STALE ... 109......
Inconsistent intermediate liSt Statecccuviiiiiiiiiie e 110
Subgraph corresponding to cla@pa graphGcoo e, 130

Xii

List of Tables

Table 1:
Table 2:
Table 3:
Table 4:
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.

Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15:
Table 16:
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.

Sample queries with their input and OULPUL SIZEScooiiiiiiiiiiiiii e 35
Completion time depending on join ordering (large qUEeries).........cccvvvveeeeiiiieeeennns 38
Slowdown of nested queries vSs. hash QUETES.........cueieiiiiiiiiiii e 40
Response time (time to firSt reSUIt)coooviiiici e 40
BENChMAIK QUETIESeiiiiiieieiei et e e e e e e s e e r e e e e e e e e e s e e annns 61
Application sizes and eXeCULION tIMES..........uuuiiiiiiiiieieii e 62
Overhead of non-incremental evaluation..............cccoouvviieiiiiiee e 66
Benefit of custom selection code (selection queries only)cccovvcviveeiniiieeeeenenen. 68
Unnecessary assignment test Optimizationc.cooviiiiiiiiniiene e 69
Frequencies and individual evaluation times...........ccccceeeeiiiiiiiiiieeer e 72
Maximum field assignment freqQUENCIESc..uviiiieiieee e 73
Benchmark queries with Non-empty reSUIS............uueiiiiiiiiiiie e 74
On-the-fly debugging OVErhead...............oooiiiiiiiiiiiiiii e 78
On-the-fly qUEry OVEINEAM............eeiiiiii e 79
QUETY EXAIMPIES ...ttt e st e e e 96.........

L@ 11T YA o= =] 1 1SS 102.....

Field assignment frequency in SPECjvm98 applications..........ccccceeveeeviiviiiivnnnnnnn. 133
Breakdown of query OVErNEad. ...t 135
Execution times, overhead times, and invocation freqUeNnCy..........ccccccceeeerriiniiinnnns 137
Results for evaluations with no fast selections and no change tests.............cc.o....... 138
Non-incremental evaluation reSUISooovii i 139
Predicted SIOWHAOWN ..o 140

xiii

Xiv

1 Introduction
“There are things on heaven and earth, Horatio,
Man was not meant to know.”
Hamlet

“Man will never reach his full capacity while
chained to the earth. We must take wing and
conquer the heavens”

Icarus

When object-oriented programming was introduced in 1966 [48], it was viewed as yet another
programming paradigm destined for the cobweb-filled corners of the academy and oddball
investment banking companies. Even the wide adoption of some of its principles—classes as
modules, inheritance as reuse—was marred with compromises and hybrid implementations in
languages like C++. Yet, the underlying elegant structure of object-oriented software—objects
encapsulate state and behavior, objects exchange and react to messages, objects inherit their
parents’ features—is more and more recognized as a useful model for a wide range of
applications. Commercial software written in C++, Eiffel, Smalltalk and Java; distributed
systems using CORBA, DCOM models; web applets, servlets, and Internet agents—all these
programs adopt object-oriented or object-based paradigms. The success of object technology
has finally driven it into the mainstream of both computer science and popular computing.

Yet at this moment, when the paradigm of object-orientation has swept over the programming
world, the programmers find themselves in a curious situation. The programming languages,
environments, and tools have improved to accommodate new OO languages and their
implementations. However, program complexity has increased at a much faster rate. Millions of
lines of code written and maintained each year are almost impossible to comprehend by the
humans in charge of them. Users accept buggy software releases as a norm, and programmers
aware of the situation can only blame the herculean task of enforcing all requirements of
projects on the underlying complex systems.

While the object-oriented paradigm and its tools have tremendously improved the software
development and maintenance process, the work is not yet finished. At the beginning of this
research project, we felt that there were opportunities to contribute to the field of object-

oriented program debugging, and we believe that this dissertation contains such contribution. It
is not the final answer to the daunting problem of debugging, but rather a new approach to
debugging and a prototypical tool that implements it.

This thesis examines the problem of verifying object relationships in running programs.
Programmers writing a piece of code are aware of various constraints that should be preserved
at runtime. During the process of debugging, then, how can the programmers be sure that none
of these conditions are violated?

1.1 Problem Statement and Motivation

The goal of this thesis is to allow quick and easy checking of object constraints in object-
oriented programs. Programmers debugging or trying to understand such programs should be
able to check the correctness of a constraint with a simple question. The method to achieve that
has to be powerful and simple. The method’s implementation should be fast enough to answer
a question in less than a second, or, if the query is checked while the program executes, it should
not unacceptably slow down the program.

For example, consider thevac Java compiler, a part of Sun’s JDK distribution. During
compilation, this compiler builds an abstract syntax tree (AST) of the compiled program.
Assume that this AST is corrupted andrialdExpression object no longer refers to the
FieldDefinition object that it should reference. Due to an error, the program may create two
FieldDefinition objects such that theeldExpression object refers to one of them, while other
program objects reference the othietdDefinition object (Figure 1). In other wordayac should
maintain a constraint thatrieldExpression object that shares the type and the identifier name
with aFieldDefinition object must reference the latter throughfidwefield. What happens if this
constraint is violated? The compiler traversing the incorrect AST will perform incorrect
transformations leading to buggy output code. But even after discovering the existence of an
error, the programmer still has to determine which part of the program originally caused the
problem. How can debuggers help programmers to find such errors as soon as they occur?

FieldExpression 1 should refer to
field — FieldDefinition 1

refers to - —
FieldDefinition 2

Figure 1. Error injavac AST

This dissertation proposes a technique to solve the problem: query-based debugging, and
presents optimized implementations of this technique. Static query-based debugging allows
programmers to ask complex questions about interobject relationships using simple queries. A
dynamic query-based debugger continually updates the results of queries as the program runs,
and can stop the program as soon as the query result changes. In addition, this thesis compares
these approaches with existing debugging techniques and shows how queries can be used to
debug object-oriented programs and understand runtime object relationships.

1.2 Contributions

The overall contribution of this dissertation is the development of a methodology and the
implementation of practical tools for asking questions about object relationships and for
checking interobject constraints that exist during the execution of object-oriented programs.
The research on query-based debugging contains the following contributions:

» A new approach to debugginipstead of exploring the program single object at a time, a
guery-based debugger allows the programmer to quickly extract a set of interesting objects
from a potentially very large number of objects, or to check a certain property of a large
number of objects with a single query.

« A simple yet flexible query moddlhe query model extends the simple-to-understand
semantics of a programming language expression. Conceptually, a query evaluates its
constraint expression for all members of the query’s domain variables. The model is simple
to understand and to learn, and at the same time it allows a large range of queries to be
formulated concisely.

A practical interactive query tooMany queries are answered in one or two seconds on a
midrange workstation, thanks to a combination of fast object searching primitives, query
optimization, and incremental delivery of results. Even for longer queries where the tool
takes a long time to produce all results, the first result is often available within a few
seconds.

Since static query-based debugging answers users’ questions only when the program is
stopped, it cannot indicate the exact location in the program where an error happens. To stop the
program as soon as the error occurs, we have proposed and implemented dynamic query-based
debugging. The research on the dynamic query-based debugging contains the following
contributions:

« An extension of static query-based debugging to include dynamic quéotesnly does
the extended debugger check object relationships, but it also determines exactly when these
relationships fail, and it does this while the program is running. This technique closes the
cause-effect gap between the error’s occurrence and its discovery.

» Use of dynamic queries for monitoringhe dynamic debugger helps users to watch
changes in object configurations through the program’s lifetime. This functionality can be
used to better understand program behavior.

A practical dynamic query tool.he implementation of the dynamic query-based debugger
has good performance. Selection queries are efficient with less than a factor of two
slowdown for most queries measured. We measured field assignment frequencies in the
SPECjvm98 suite, and showed that 95% of all fields in these applications are assigned less
than 100,000 times per second. Using these numbers and individual evaluation time
estimates, our debugger performance model predicts that selection queries will have less
than 43% overhead for 95% of all fields in the SPECjvm98 applications. Join queries are
practical when domain sizes are small and queried field changes are infrequent.

Good performance is achieved through a combination of two optimizations: Incremental
guery evaluation decreases query evaluation overhead by a median factor of 160, greatly
expanding the class of dynamic queries that are practical for everyday debugging. Custom
code generation for selection queries produces a median speedup of 15, further improving
efficiency for commonly occurring selection queries.

In summary, we believe that query-based debugging is a powerful tool to debug large, complex
object-oriented programs. Our implementation of the query-based debuggers demonstrates that
gueries about object relationships can be expressed simply and evaluated efficiently. We expect
that the results of this work will provide a foundation for further understanding of program
execution and a commercial implementation of advanced debugging tools, simplifying the
difficult task of debugging as well as facilitating the development of more robust software
systems.

1.3 Overview

This dissertation first presents background and related work in the debugging field in section 2.
Then it discusses static query-based debugging, its model and implementation in section 3.
Section 4 presents the dynamic query-based debugging method that extends the method
proposed in the previous section. The same section gives examples of dynamic query-based
debugging, its implementation for Java systems, experimental results, and a query cost model
that can predict program slowdown for various queries. Section 5 classifies different query
types and their typical use for different programs.

Section 6 outlines open problems and future work. Section 7 presents conclusions indicating
that query-based debugging is a novel useful debugging tool.

2 Debugging—Background and Related Work

“Things are not always as they seem.”
Mandrake

“No matter what the product or service might be,
you can find it somewhere else cheaper!”
E. Scrooge

Debugging of computer programs appeared soon after programming itself. From the beginning
of debugging [73] to the present day, researchers and developers have proposed a plethora of
tools to find errors in programs. While static program errors can be found automatically through
syntactic analysis and semantic checking of language requirements, finding runtime program
errors is a much more complicated task. Although runtime errors are directly linked to the
program text, they also deal with the different universe of executing instructions, method calls,
memory allocations, interobject references, and other relations only implied in the original
source code. This duality of the static program text and the dynamic program representation
makes runtime debugging a daunting task. A number of runtime debugging methods have been
proposed. They can be classified into control flow debugging, data observation, and mixed
methods. To better describe the capabilities of different methods, we use the following case
studies.

For the first example, consider a graphical user interface program. The program creates objects
corresponding to the graphical widgets that reference their parent window, and windows that
must in turn reference enclosed widgets. Assume that the program contains an error which
makes some windows miss references to their children widgets (Figure 2). As a result of this

Window 2 Widget 1
. ‘ >< p-| Parent
widget
collection

Figure 2. Error in GUI program

error, a program incorrectly redraws widgets contained in a window. Assuming that a program
is stopped at a breakpoint, how can a programmer find windows and widgets violating the
relationship?

For the second example, consider another error that could occur in an AST built by the javac
Java compiler. Assume that this AST is corrupted by an operation that assigns the same
expression node to the fielght of two different parent nodes (Figure 3) that may be instances

of any subclass dinaryExpression. The error may not become apparent for some time, and the

BinaryExpression 1

right E— Expression 1

_>
BinaryExpression 2 j
right — Expression 2

Figure 3. Error injavac AST

compiler may traverse the corrupted AST performing type checks and inlining transformations.
Even after discovering the existence of the error, the programmer still has to determine which
part of the program originally caused the problem.

The two examples above illustrate errors that can occur in object relationships. The following

subsections discuss control flow debugging, data-flow debugging, and debugging related
techniques in program visualization in relation to these examples. We show that these
techniques do not adequately address the problem of finding errors that involve several related
objects.

2.1 Control Flow Debugging

Errors in programs can be caused by an incorrect control flow or an incorrect data flow. This
section discusses the first aspect of the program runtime—the control flow. The control flow
follows the program text, which may hide errors such as infinite loops, unintended method
invocations, or faulty object interactions. Control flow debugging tools help programmers to
observe and to manipulate the control flow of the program. This section describes such tools in
detail.

2.1.1 Breakpoints and Single Stepping

In the simplest case, programmers want to stop the program when it reaches a certain point or
to single step through some of the instructions of a running program. The goal of such actions
is to determine what code the program executes before crashing and to provide a foundation for
the data observation tools (section 2.2). Breakpoints and single stepping are the original
debugging methods that predate even the first paper on debugging by Gill [73] and that are
available in most classical (Mesa [165], Cedar [166]) and modern debuggers. Single stepping
back in time is confined to a few innovative tools like ZStep 95 [176]. Wilson and Moher [193]
propose even more radical concept deanonic memorthat would allow programmers to go

back to previous process states. Implementing breakpoints for polymorphic calls in object-
oriented programming languages is also a less common, though very useful technique [46]. As
Gill notes, single stepping is practical only in very limited cases when programmers want to
look at a micro-segment of a program, because the slowdown during execution is enormous.

In the case of the GUI program error, a programmer would stop the program at a breakpoint
before trying to find the corrupt window and widget objects. To findiabee error using
breakpoints, the programmer would have to know which part of code assigns the incorrect link,
and only then place a breakpoint close to the error spot, and single step through it using data
observation tools. Such debugging is very tedious. To add power to breakpoints and to improve
the efficiency of debugging, researchers have proposed conditional breakpoints.

2.1.2 Conditional Breakpoints

Conditional breakpoints [36][109] check a condition at a particular program location and stop
the program if this condition is true. The goal of this technique is to let the program run at full
speed between the breakpoints, to slow down at breakpoints, and to stop only at interesting
breakpoints. The programmer saves a lot of time, because the debugger checks the error
condition at each breakpoint automatically. Programmers have to interfere only if the condition
is true. Research on conditional breakpoints has led to efficient implementations of breakpoints
and conditional breakpoints on modern architectures [109]. However, conditional breakpoints
suffer from a drawback—the breakpoint condition cannot easily reference objects which are not
reachable from the scope containing the breakpoint. To discoviawdhesrror, the condition

has to find an object not reachable directly from the scope containing the breakpoint—the
BinaryExpression containing a duplicate reference to the childpression object. To
accomplish this task, the programmer could write custom testing code for use by conditional
breakpoints. For example, tiweac compiler could keep a list of a@linaryExpression objects

and include methods that iterate over the list and check the correctness of the AST. However,
writing such code is tedious, and the testing code may be used only once, so the effort of writing
it is not easily recaptured. Finally, even with the test code at hand, the programmer still has to
find all assignments to the fielight and place a breakpoint therejdvac, there are dozens of

such statements. In summary, the tool (conditional breakpoints) provides minimal support and
the programmer ends up doing all the work “by hand”.

2.1.3 Language Constructs

Some programming languages provide debugging support by allowing assertions [132][133].
Assertions, such as pre-/postconditions and class invariants as provided in Eiffel [134] are
similar to conditional breakpoints because they check a given constraint and stop a program or
throw an exception if this condition is violated. However, assertions are checked only at specific
program execution states. Preconditions are checked at the method entry, postconditions are
checked at the method exit, and invariants are checked both at the entry and at the exit. In
addition to accessing the object state, postconditions can reference the “old” state of the object
at the beginning of the method invocation.

Like conditional breakpoints, the assertions cannot access objects unreachable by references
from the checked class.

Some debugging tools such as MrSpidey [62] use static program information to check the
assertions before the program is run. MrSpidey provides conservative static assertion analysis
indicating potential errors.

Constraint programming languages [90] make assertions first-class objects and structure
programs around inter-object constraints. These programming languages change the
programmer’s viewpoint from objects to constraints. Though constraint programming
languages are powerful tools, they do not help to debug programs written in mainstream object-
oriented languages.

2.1.4 Breakpoints and Testing Code

To generalize the idea of conditional breakpoints, tools could allow programmers to insert any
code at a breakpoint. The implementation of this idea was pioneered by the EDSAC routines
[73] and included in other programming environments (Mesa [165], Cedar [166]). Though this
approach offers the ultimate versatility, it also shifts all the work onto the programmer’s
shoulders. The programmer has to gather the data to be printed or displayed by the testing code.
Writing test code may consume a considerable amount of time. For example, the Self virtual
machine [89] contains over 10,000 lines of testing-related C++ code. Such testing code can be
used only to answer very particular questions while tracking a bug. Consequently the effort
spent writing this code is considerable compared to the number of times it can be used. In
addition, testing code may be inefficient, especially if the conditions it is testing are complex.
For example, a relatively straightforward assertion, such as “no widget is contained in more
than one window,” may require the creation of reference counts to be verified efficiently. The
javac compiler could keep a list of @inaryExpression objects and include methods that iterate

over the list and check the correctness of the AST. With large programs containing thousands of
objects, naive testing code may take minutes to execute. Even with the test code at hand, the
programmer still has to find all assignments to the figlt and place a breakpoint there; in

javac, there are dozens of such statements.

2.1.5 Method Call Animation

While breakpoints and testing code provide maximum versatility, there are tools that offer
limited control flow debugging with increased ease of use and higher efficiency. One such group
of tools deals with the method or function call animation. This group of tools is very important
for program debugging because the control flow of the object-oriented programs is difficult to
follow due to polymorphic calls. While some tools only display the function call stack, others
provide additional functionality. For example, Ovation [50] displays clusters and matrices of
interacting classes, histograms of class instances and their method invocation activity. Jinsight
[52] extension to Ovation displays the program execution as a modified Jacobson diagram that
shows time on vertical axis and message invocations on horizontal axis. Patterns of similar
message sequences are compressed into more user-friendly form using several similarity

criteria. The system also allows filtering and searching through the graph. Program Explorer
[117][118][119][120] shows method invocations between individual object instances and
between objects grouped by classes. It also provides an interaction chart that juxtaposes object
lifetime with object interactions. HotWire [116] displays the basic call stack while allowing
custom object visualizations. PV [111] extracts events of different levels from program traces
and animates them. As a result, programmers can observe object allocation patterns together
with the communication library behavior and the operating system activity. Xab [22] intercepts
and shows PVM calls in parallel programs.

Jerding, Stasko and others [101][102][155] proposed a number of techniques to visualize

messages in object-oriented programs. The first one displays object creation and invocation
messages [101]. To use visualization for large real-world systems, the information about a

system can be summarized in different ways. Authors propose call graphs, summarized call

traces and other representations that carry more information than a call graph, but do not have
the information overload of a call trace. Call traces can be summarized in execution murals.

Higher level information is obtained by extracting message patterns from these traces.

Consens et al. [44][45] use Hyisualization system to find errors by querying distributed
program event sequences. The GraphLog programming language in‘tBgstgm allows to
visually specify abstract event groups and find such groups in the event traces. The language is
powerful enough to find patterns involving transitive closure.

Kishon et al. [112] propose a formal framework to implement execution monitors in
programming environments. Authors use functionals to add monitoring behavior to the
programs, and integrate the monitoring semantics by merging it with program’s denotational
semantics. A system using the paper’s theoretical results was implemented in Haskell.

Method call animation and its extensions help to understand object-oriented program execution
by displaying the non-trivial control flow of these programs. These methods do not directly
solve the GUI andghvac errors, but would indicate the control flow anomalies leading to an
error.

2.2 Data Observation

The previous section discussed approaches of detecting and changing a program’s control flow
to discover errors. The second important method of finding errors is data observation.
Corrupted memory locations, incorrect values, and faulty object references are a large source of
errors. While control flow debugging tries to answer the questimmsomething went wrong,

data observation tools try to findhat made the control flow take a wrong path avitht
incorrect data contributed to the incorrect results. This section describes various data
observation tools that are widely used in debugging.

2.2.1 Memory Inspection

The simplest tool available for data observation allows users to inspect memory locations and
to see their contents in an intelligible way. l.e., the tools make it possible to display memory
contents as values of variables or even as structured objects [46]. While most debuggers contain
inspector tools, some of them are more powerful than others (DDD[196], Look!
[14][143][188]). For example, the ET++ [25][69][183] runtime browser displays a list of all
classes, all objects of a selected class and all objects that reference the current object. The last
capability is particularly interesting because the system has to track which objects are
referencing the current object, which is a costly operation. The ET++ object graph can also
show the container objects that store other object instances.

ET++ display capabilities build on the foundation established by Smalltalk implementations
that had similar features [76][77]. To allow intelligent display, manipulation, and inspection of
objects, Self [41][129][151] and Smalltalk [75] environments adopt the object-focused
interaction model. Such environments not only display structured object instances, but also
allow users to interactively change them. Similar spatial immediacy is provided by ZStep 95
[176] debugging environment. An implementation aleanonic memory193] would allow

users to access and observe past states of a process.

Memory inspection tools can help to find the GUI gwdc errors. However, programmers

have to do a lot of work to manually look at all GUI window objects, widget objects, and
references between them. Similarly, users have to traverse @ldheAST nodes to check
whether they are correct. Furthermore, such inspection has to be done every time the program
modifies the AST. Consequently, such investigations are very tedious. Data structure display
tools described in the next subsection improve the process of data browsing.

2.2.2 Data Structure Display Tools

A straightforward extension of a memory inspection technique is a tool that allows a full-
fledged data structure display. Usually the tool displays data structures by using the user
specified code. For example, Duel [74] and xDuel [195] display data structures by using user
script code. In addition, Duel provides operators for filtering irrelevant collection members, for
iteration over collections, and for traversal of data structures. Duel expressions can be
intermixed with C expressions accepted by the undertydbglebugger. Although Duel is not
implemented for an object-oriented language, it could be extended to handle object collections.
Although these systems simplify data structure display, they still require users to write the
traversal and output code. This code can be inefficient for large structures. Duel does not
address the problem of finding the execution points at which the structure should be displayed.

10

2.2.3 Data Filtering and Summary Tools

In large object-oriented programs, the number of objects is so large that programmers would not
be able to browse through all instances in a reasonable time. Debugging tools help with the task
by filtering and summarizing the data. Ovation [50] includes a compact instance histogram view
that shows all instances for all classes and an allocation matrix view that shows different
instances created by different classes.

Hotwire [116] shows object instances, class instance counts, and method invocation counts on
specific instances. If the method invocation count is zero, the object is not used and probably
created erroneously. Similar views are provided in the Java LTK debugger [113].

Look! [14][143] provides instance filtering tools that allow to remove individual objects and
classes of objects from a view. The filters are coupled with method-call animation and instance-
creation animation tools.

Instance filtering and summary tools do not help to find errors like the GUaawrderrors,
because these errors cannot be detected from the summary information nor by creating a simple
filter. However, these tools are first steps in the direction of debuggers that mix control flow and
data-flow debugging.

2.3 Mixed Constructs

Though some of the tools discussed above contain both control flow and data-flow debugging
constructs, most of the time these aspects are separated or interact only occasionally. However,
a number of tools integrate both types of debugging to provide additional capabilities.

2.3.1 Data Breakpoints

Data breakpoints combine breakpoints with data monitoring. A breakpoint is triggered when a
variable connected to the breakpoint is assigned [106][179][180]. Unconditional data
breakpoints can be used to detect unexpected writes to variables. However, just detecting writes
may give user too much unnecessary feedback. Errors may occur only when the variable is
assigned a certain value. Conditional data breakpoints stop the program only when the variable
is assigned a given value. Both variations of data breakpoints allow users to find incorrect value
assignments to variables using a single test.

However, even conditional data breakpoints do not help to debjagdbherror described in the
beginning of this chapter because they are specific to one instance of an object. With hundreds
or even thousands @inaryExpression instances, and in the presence of asynchronous events
and garbage collection, the effectiveness of data breakpoints is greatly diminished. In addition,
it is hard to express this type of error as a simple boolean expression. The error occurs only if
an expression is shared by another parent node—a relationship difficult to observe from the
other parent or from the child itself. In other words, by looking just at therfigidof some

11

BinaryExpression object we cannot determine whether this object as well as its new field value
are erroneous.

2.3.2 Program Slicing

Often programmers need to decide what operations affect the current program statement.
Program slicing [184][185][186] finds such a subset of program statemersieeathat

affects the value of a certain variable or the current statement of the program. To find the slice,
static slicing uses information inferred from the program text. Static analysis is conservative
and uses all possible control flows to find statements affecting the current one. Such a slice may
be large, but it is correct for all possible executions of a program. Dynamic slicing
[9][104][169] uses program execution history to determine the slice. Such analysis finds a slice
accurate only for the current program execution, but the slice may be smaller. In both cases, the
analysis combines control flow and data-flow debugging.

Slicing is helpful to find the cause of a detected error. Programmers can investigate the slice of
a program affecting the invalid statement and reason about the causes of the error. However, the
slice may still contain a large part of the program and make it difficult to identify statements that
were original causes of an error. In the case ghtlae bug, if the error is discovered late in the
program execution, the statement containing the original error may be hard to identify.

Bourdoncle [27] uses a technique similar to slicing to find correctness conditions for Pascal
programs. His abstract debugging system uses programmer provided assertions and abstract
interpretation of the program to determine how assignments of certain values affect subsequent
program statements.

2.4 Program Visualization Systems

Software visualization systems such as BALSA [31], Zeus [32], TANGO/XTANGO/POLKA
[159], Pavane [47][147][148], and others [84][137][144][146] offer high-level views of
algorithms and associated data structures. They cannot be regarded as pure debugging tools
because software visualization systems have different uses than everyday debugging. They aim
to explain or illustrate the algorithm [61], so their view creation process emphasizes vivid
representation. Consequently the view creation requires substantial user effort. There have been
several attempts to use the visualization systems for debugging, some of them using the
conventional visualization systems [18], some of them adapting the systems to the new field.
For example, Hotwire [116] provides program visualization capabilities through a constraint
language. The system separates visualization script from the program allowing succinct
visualizations that do not change the program source and can be used in quick debugging
sessions.

Hart et al. [82][83] use Pavane for query-based visualization of distributed programs. However,
their system displays only selected attributes of different processes and does not allow more

12

complicated queries. The work done by this group focuses on gathering consistent information
from distributed sources in an efficient manner. Similar issues arise in implementing distributed
guery-based debugging as discussed in section 6.2.2.

Takahashi et al. [167] visualize, animate, and directly modify abstract data structures. Users of
their system specify a mapping rule or allow the system to infer it from examples. The
interesting feature of their system is the reverse mapping of pictures into data structures which
gives users the power of direct manipulation.

Noble [140][141] observes that abstract data structures can be viewed at three levels:
abstraction level, implementation level, and contents implementation level. Program
visualization systems usually operate at the abstraction level and do not display any details of
the ADT's implementation. On the other hand, debuggers display the low level objects
(contents) composing the ADT. Noble’s Tarraingim program visualization system implemented
in Self presents the middle level implementation view. Such view helps programmers to
understand and debug ADTs. However, the implementation view is difficult to automatically
identify and maintain. It requires ADTs to be implemented in a single class with clearly
identified mutator and accessor methods. Though this assumption follows object-oriented
design guidelines, programmers may want to observe more general object interaction patterns
not supported by the system. For examplejafee AST construction does not follow the strict
mutator/accessor requirements of the Tarraingim system.

Though most visualization systems have constructs powerful enough to discgaeadivelg,

these constructs are as difficult to use as writing custom test code. On the other hand, the
systems that facilitate rapid visualization development do so for a limited class of visualizations
that do not help in our case.

2.5 Summary

More than fifty years of debugging research has produced a wide variety of control flow and
data-flow debugging tools. However, these tools are ill-suited to find the errors involving multi-
object relationship violations. Even the best debugging techniques force programmers to adopt
either a very low level view of single objects and their properties, or an extremely macroscopic
view of class histograms and statistical data. The tools lack capabilities to find small groups of
objects satisfying specific constraints.

13

14

3 Static Query-Based Debugging
“In times of crisis, it is of utmost importance not
to lose one’s head.”
M. Antoinette

“Attention to detail is the watchword for gleaning
information from an unsuspecting witness.
Insp.Clouseau

3.1 Introduction

To overcome the problems described in chapter 2, we propose a new debugging technique:
guery-based debugging [123]. This new approach offers programmers an effective query tool
that allows complex relationships to be formulated easily and evaluated efficiently. Static
gueries can be asked whenever a program is stopped at a breakpoint. Queries can be formulated
during debugging sessions, or stored in a debugging library together with the program’s normal
code. A query-based debugger can easily find errors in the examples presented in the beginning
of chapter 2. For example, verifying that all widgets are referenced back by their containing
windows is as simple as entering the query

widget wid; window win.

(wid window = win) &&

(win widget_collection includes: wid) not

(The current implementation of the static query-based debugger is based on Self, so query
expressions use Self syntax. On the other handytiemicquery-based debugger described in
section 4 is implemented for debugging Java and uses Java expression syntax [16].) This query
identifies all objects that violate the containment constraint. Not only does this query save
debugging time, the query evaluator can apply sophisticated optimization algorithms to speed
the execution of the query and to deliver the results incrementally. Typical queries execute in
seconds, even for programs involving thousands of objects.

To discover thg¢avac bug, we could combine conditional breakpoints with a static query-based
debugger. For example, the query

BinaryExpression* el, e2. el.right == e2.right && el = e2

would find the objects involved in the abgaeac error. The breakpoints would then carry the
condition that the above query return a non-empty result.

The rest of this chapter discusses the debugger query model, the system implementation, and
experimental results.

15

3.2 Query Model

Our basic premise is that programmers need to verify relationships among objects during
debugging. However, any tool for verifying relationships must be both expressive and simple to
be widely applicable and to save debugging time. In our system, query expressions look just like
expressions in the underlying programming language, Self [177], so that programmers can use
gueries without learning a new syntax or language. Accordingly, we would expect query-based
debuggers for different languages to choose a syntax close to that language. In fact, we use Java
expression syntax in the dynamic query-based debugger (section 4).

The query syntax is as follows:

<Query> ::==<DomainDeclaration> { ; <DomainDeclaration>} .
<ConditionalExpression>
<DomainDeclaration> ::==<ClassName> [*]

<DomainVariableName> { <DomainVariableName> }

The query has two parts: one or m@emainDeclarations that declare variables of class
ClassName, and aConditionalExpression. The first part is called trdomain partand the second
the constraint part Consider the widget and window query:

widget wid; window win.

(wid window = win) &&

(win widget_collection includes: wid) not

The first part of the query defines gearch domaimf the query using databasetive domain
semantics ([1], section 4.2). The domain part of the above example should be read as “find all
widgetswid and all windowswin in a system such that...”. With Self being a prototype-based
languagewidget is the name of the widget prototype, and its domain are all objects that contain
the same fields as this prototybi a class-based languagégget would be a class name and

its domain would be all instances of the class.

The second part of the query specifies the constraint expression to be evaluated for each tuple
of the search domain. Constraints are arbitrary Self expressions that evaluate to a boolean result.
In particular, they may contain message sends. Semantically, the expression will be evaluated
for each tuple in the Cartesian product of the query’s individual domains, and the query result
will include all tuples for which the expression evaluates to true (similarly to an SQL select

query).
The general form of a query is

X1 X11 - X1 n1s - s Xm Xm1 - Xm nm-
Constraint; && ... && Constraint,

1 see section 3.3 for a more precise definition.

16

where X is a domain variable whose domain is ’he definition of domain variables can have
single-type domains or domains including subtypes. For exampleyidiget single-type
domain contains widgets but does not contain colorWidgets. In other words, a domain does not
include objects of any subclass or subtype [35] (or, in classless Self [174], subobject). However,
if a “*” symbol in a domain declaration follows the prototype name, the domain includes all
objects of subtypes, subclasses, or subobjects. In this caséddbhedomain would contain

both widgets and colorWidgets.

We express the constraint part as a conjunction of a number of individual constraints only
because this conjunctive form allows a humber of optimizations to the query evaluation order as
described in section 3.3. Constraints not in conjunctive form are perfectly valid and can be
specified, but our current system performs no optimizations on them. Conjunctive queries occur
frequently and are natural to use, so this restriction has not yet proved to be unreasonably
limiting.

We refer to queries with a single domain variables@gction queriesfollowing common
database terminology, we call the rest of the qué@uiasqueriesbecause they involve a join
(Cartesian product) of two or more domain variables. Join queries with equality constraints
only (e.g.pl.x=p2.x) arehash joindbecause they can be evaluated more efficiently using a hash
table (see section 3.3.6).

3.2.1 Assumptions

Our query model is based on several assumptions. First, it is the programmer’s responsibility to
ensure that queries are side-effect free—just as expressions in C/C++ assertions must be side-
effect free. It would be possible (at least in Java) to perform a conservative test whether methods
invoked in the query are side-effect free. However, such tests become increasingly difficult for
polymorphic method chains. Our system follows the model of assertions in C/C++ and Eiffel
that require users to ensure that the methods are side-effect free.

Second, the programmer must ensure that the queried objects are in a consistent state when the
guery is evaluated. In other words, the expression evaluation should succeed and provide
meaningful results. At some program execution points the query evaluation may bé Fosafe
example, during an insertion of an element into the list, the list may have an inconsistent state.
In Figure 4, if the query is asked just after the program updatesetheeference of the
OldNode but before it sets theext reference of thlewNode to point to théfailNode, the query
evaluation will be unsafe. If the debugger traverses a list, it may crash because the reference
NewNode.next is null or it may produce an incorrect output by using a shorter list that does not
contain theTailNode. For static queries, we assume that the user is aware of this problem and

1 The term “unsafe” here follows the programming language terminology and not the database terminology, where safety relates
to queries with infinite answers ([1], section 5.3).

17

Node OldNode TailNode
next ——1— P Next —1— | Next ——
Original list
Node OldNode TailNode
next —f—p»{ next \ next -
NewNode
next —_—

List insertion
Figure 4. Inconsistent list state

only asks queries when queried objects are consistent. The problem of consistency for dynamic
gueries is discussed in section 6.2.1.

Finally, to use efficient hash joins (see section 3.3.6), we assume that the “=" method in queries
has equality semantics, i.e., that the “=" method has the same meaning and is as strict as equality
of the system-defined hash value of the left-hand operand and the hash value of the right-hand
operand. If the hash value equality is stricter than the “equals” method or if the two are
incomparable, the hash joins would give incorrect results. For example, all methods can be
redefined in Self, so the “=" method can violate the constraint above. However, the Self
programming guidelines strongly suggest preservation of the equality semantics, and the
current Self system contains no method that violate®it the other hand, boghallowand
deepequalities [110] are supported in the hash joins depending on which equality is used in the
“=" method; the hash value equality in a hash join is verified by using the “=" method equality.

3.2.2 Discussion

We chose the given query model primarily because of its simplicity: a query is a boolean
expression prefixed by a search domain specification. Originally we anticipated having to
extend the model once its shortcomings would become clear during experimentation, but so far
we have not encountered such situations.

One possible shortcoming of this query model lies in the nature of program invariants spanning
a number of objects and classes. Programmer implied invariants usually have a mixture of
universal and existential quantification—"For all widgets, there exists a parent window and this
window refers to the widget in its widget collection.” Such complex constraints can be violated

1 For environments where this assumption is not valid, section 3.4.5 shows the effect of not using hash joins.

18

in a variety of ways. First, the widget may not reference a window at all. Second, the widget
may reference a window that does not reference this widget. Finally, the window may reference
a widget that does not reference this window. Can a single query find all violations of a given
constraint? Unfortunately, that is not the case with the current query model.

Consider a simple constraint that requires an element to belong to a single collection:
Collection c; Element e. Oe [k: ¢ contains e

Here the constraint is expressed in the notation of mathematical logic and can be written in
English as: “For all elements there exists a collection that contains that element.” How can a
program violate this constraint? The mathematical logic expression of such constraint violation
is:

Collection c; Element e. (e Oc: ! (c contains €)

Unfortunately, in this case, there is no simple way to express the violation condition as a query.
A query
Collection c; Element e. ! (c contains e)

would give as an answer all tuples such that a given collection does not contain the given
element. However, that is not the intention behind the query.

One approach is to define a method in the dessnt that iterates through all collections and
checks whether the element instance is contained in them. Then the query would be an
expression:

Element e. ! (e isContainedBySomeCollection)

Unfortunately, this solution involves writing testing code which is tedious, inefficient and
inelegant. Currently we offer no solution to this problem. Considering that a large class of
gueries can be expressed in the current model, some queries can be rewritten to conform to the
restrictions of the model. If users of a query-based debugger formulate queries by considering
some constraint violation instead of formulating the constraint, their queries would likely
conform to the model. In some cases, it is possible to consider the constraint and then to check
different ways in which it can be compromised. Consequently, finding the violation of an
invariant may require asking a few queries to check all possible violations of the constraint.

An alternative way of specifying queries would use iterators such as Smalltalk’s
allinstancesDo: method; by predefining more of these iterators, one could potentially avoid
introducing any query language at all and just use the base language. We rejected this approach
for two main reasons. First, it is language-dependent—languages without closures cannot
express such iterators succinctly. Second, we felt that a declarative domain specification was
simpler and more flexible, putting the burden of choosing an efficient iteration and evaluation
order on the query optimizer instead of the programmer.

19

Row Column
morph morph

meaph circle m dreset frame outst Teame sler

A
an | mmmmrl | memin | home | < ¥ >

18:18:57 4 frameswe

A morph factory
T Gy copp et ke Bl ke,
e e e e

Figure 5. Self morphs

Object-oriented databases typically contain more sophisticated query models
[2][19][139][154] including such standard models as OQL from the Object Database Standard
[37]. Our solution was specifically designed for query-based debugging, and we deliberately
traded off expressive power in exchange for simplicity and ease of use because we deemed these
attributes to be of primary importance.

3.2.3 Examples

We now discuss several examples of queries that we used to understand large programs written
by others.

3.2.3.1 The Self Graphical User Interface

We implemented our debugger prototype using the Self user interface based on morphs
[129][156]. Morphs are user interface objects (usually having a visual representation) that can
perform specified actions and can be moved on the desktop (Figure 5). Morphs can contain
other morphs and hierarchically build complex interface objects. Some morphs are primitive.
For example, row and column morphs arrange objects horizontally or vertically, frame morphs
surround other morphs, and button morphs trigger actions. More complicated morphs such as
object outliners are composed of a number of simpler morphs.

20

During the development of the debugger we encountered numerous questions about the
accepted use of morphs. Using our debugger we could easily answer many of these questions.
For example, initially we wondered whether one morph could be a part of more than one
composite morph. Intuitively, we felt that such a structure would be incorrect, so we asked the
debugger to “find all morphs directly contained in at least two morphs”:

morph a b c.
(a morphs includes: b) && (¢ morphs includes: b) && (a !=¢)

An empty answer set showed no such morphs in the entire Self system. Note that the last
conjunct in the constraint indicates that morph objacisidc should not be identical. This
constraint is not enforced implicitly and has to be explicitly specified.

Another interesting question arose when we tried to construct “table” morphs. Are row morphs
usually embedded into column morphs or vice versa? We looked at the object outliner class that
already implements a similar structure, and asked the following two queries:

objectOutliner a; rowMorph b; columnMorph c.
(a morphs includes: b) && (b morphs includes: c)

objectOutliner a; columnMorph b; rowMorph ¢
(a morphs includes: b) && (b morphs includes: c)

The output of the first query was empty, whereas the output of the second query had 23 results
(objectOutliner-columnMorph-rowMorph tuples), leading us to conclude that object outliners
contain column morphs that in turn contain row morphs. However, the query output contained
only 23 of the 132 object outliners present in the system at that point; maybe some of them did
not contain column morphs or row morphs at all. The query

objectOutliner a; columnMorph b.

(a morphs includes: b)

returned 130 results. That is, all but two object outliners contained column morphs, but
apparently most of these column morphs did not include row morphs. Two outliners were still
unaccounted for; perhaps they did not even contain column morphs. The query

objectOutliner a. (a morphs size = 0)
confirmed this guess and showed that the two remaining object outliners were special prototype
objects. This example demonstrates how our debugger can help to understand both the structure

of objects as well as the interactions among them. As we have shown, the debugger can reveal
anomalous objects, which might not always be erroneous as witnessed in the last query.

3.2.3.2 Understanding the Cecil Compiler

Because our debugger helped us to understand Self GUI objects, we decided to look at a
complex system with which we had no previous experience—a prototype Cecil [38] compiler
written in Self by Craig Chambers, Jeff Dean, and David Grove. Here the main goal was to

21

understand the system and in particular to understand relationships among objects in the
system. During compilation of a Cecil program, the compiler creates a large number of internal
objects representing Cecil language constructs: declaration contexts, Cecil objects and their
bindings, methods, and so on.

First, we explored parts of the compiler by finding compiler objects corresponding to Cecil

constructs in the compiled Cecil program. We discovered a number of properties of the Cecil
types. For example, the simple Cecil program we compiled did not have named types with
instantiations:

cecil_named_type a. (a instantiations size != 0)

Also, the query below showed that only three Cecil types had subtypes:
cecil_named_type a. (a subtypes size !=0)

Can Cecil programs have formals with the same name in different methods?
cecil_method a b; cecil_formal c d.

(a formals includes: c) && (b formals includes: d) &&
(c name =d name) && (c '=d) && (a !=b)

The query result was not empty, confirming the hypothesis that formals with the same name can
indeed occur in different methods.

We made a number of other queries about the compiler objects. Overall, the debugger proved to
be a valuable tool in understanding the Cecil compiler. This experience leads us to believe that
guery-based debuggers will be useful for other programmers trying to understand complex
object-oriented systems.

3.3 Implementation

We implemented the static query-based debugger in Self [177], a prototype-based, pure, object-
oriented programming language. We chose Self as our experimental platform because it is a
demanding platform for debugging due to the large number of objects in the system, as well as
the numerous complex object relationships. In addition, Self provides several features that
simplify the implementation of the prototype system. In particular, Self has a fast Virtual
Machine that allows runtime (on-the-fly) code generation and optimization [5][39].

We have also implemented the static query-based debugger in Java and extended it to handle
dynamic queries. For a discussion on different implementation techniques and their
applicability to various languages, see section 4.3.7.

The query-based debugger’s front-end in Self is constructed from morphs (Figure 6). Users can
ask questions by typing in a query string or by selecting a query from the history of previously
asked queries. The answer is displayed as a collection of tuples that provides access to the

22

QBD window Answer Object from
collection the answer
collection
¥ ahall o L
et rirey rewt oscdlHodules” Fross " eppd Lok one

Ak, S M

K s optiens helew S S T EE e v
Indtlalize chject sty

L ool Gy

“Transfore T Hash, Utbor D Dcram, DN
Opptimdz U Deeg T Diastshle o st N_| D]
(Twmerate code DebugBalBar Sore:

Uizl

Execine . Pring primiteve messges

Upasie Moy

L ey 7Y Il.rl'lihr,hll.q'r.rn'l'lu'ln'pl L] ll
|

! e 122 e

Camamrnd wirliangy
Maxd o phijecis i cluec 158
Aot wearatar Uil poey Lo

i B
Fa el Imssrpoeter ne

eeapeila; "Wisld int, cesil

Figure 6. Query-based debugger GUI

corresponding objects via the direct-manipulation interface [41]. For example, in Figure 6, the
user has displayed one of tteeyMorph objects from the answer set.

The interface for the prototype implementation allows the experimenter to select what parts of
guery processing to do and what optimizations to apply. It also displays the query evaluation
time.

In section 3.3.1, we present the general structure of the system. In the remainder of section 3.3,
we discuss in more detail the most important parts of the debugger.

3.3.1 General Structure of the System

Figure 7 shows a data-flow diagram of the debugger. A query string given by the user is parsed
by a simple Self expression parser hand implemented in Self. The parser extracts the domain
variables from the query string and passes their types to the collection module which then finds
all objects of domain types (see section 3.3.2) and returns them in separate arrays to the
execution module. The parser also transforms the query string into an intermediate form, which

23

Query string

Intermediate form

Optimized form

Generated Self code

Collection size

Variable types

Y

Collection
module

Y
Code

generator

Execution
module

Obiject collections

Figure 7. Overview of the query-based debugger

Domain collections

domain collections

Constraint

expression

domain

Domain variable

name

variables

domain

constraints

Figure 9. Data structures of the intermediate form of a query

is a collection of constraints, each of which in turn corresponds to one constraint of the
conjunctive form of the query. The parser then passes this intermediate form to the optimizer
which performs order and method optimizations using the knowledge about query constraints
and domain sizes (see section 3.3.4). The code generator module then generates Self source
code for the query-specific constraint-checking methods and integrates it with prefabricated
constraint evaluation code. In the last phase, the execution module sets up the runtime
environment for the query evaluation, runs the query code, and finally sends the result back to
the user. The query evaluation process is summarized in the Figure 8 pseudo-code.

The rest of this section discusses the most important parts of the debugger in more detail.

24

/I Parsing into the intermediate form

Extract domains from the query string. For each domain create a domain collection.

Extract variables from the query string.

For each variable create a variable object. Store a name, a reference to the variable’s domain,
and a collection of references to constraints containing the variable.

Extract constraints from the query string.

For each constraint create a constraint object, store the constraint, the code for its evaluation,
and collection of references to its variables (Figure 9).

Create domain collections of the query domains by invoking the domain collector primitive.
Handle subtypes of the domain type if necessary (section 3.3.2).

/I Intermediate form transformation

Go through the constraint list {
if (equality constraint) {
Use the left-hand side of the equality to construct a hash table insertion function.
Use the right-hand side of the equality to construct a hash table lookup function.
Assign a hash-join evaluation method to the constraint.
Set left-hand side and right-hand side domains of the hash-join constraint.

}

else { Set up the constraint as a nested query }
Set up the relationship between the constraints and variables in them.

}

/I Optimization

Estimate selectivities of all constraints by evaluating constraints for a random sample of
domain objects. (Select a small sample size. Evaluate the sample only if all domains are
larger than the sample. For small queries set selectivity to high. For no-result highly selective
queries, set the selectivity to high. For other selective queries set selectivity to medium.
Otherwise, set selectivity to low.)

// Build left-deep tree of joins

Select the first join using maximum selectivity, minimum size heuristic. Assign itindex 1. Move
it from the unprocessed join table to the processed join table.
While (unprocessed join constraint table non-empty) {

Find all joins that have at least one domain in common with joins in the processed join
table. Find a join with maximum selectivity, minimum size among selected joins. Move this join
to the processed join table. Assign it the incremented index.

} /1 Resulting indices give the join evaluation order.

/I Generate code

For each of the join constraints generate its evaluation code. This code will iterate through the
input collection and the intermediate result collection to evaluate the current constraint and to
produce the tuple collection satisfying this constraint.

/I Evaluate code

If (evaluation incremental) { Use pipelined and time-sliced evaluation (section 3.3.7). }
else { Evaluate joins in a straightforward inverted tree way (section 3.3.3). }

Figure 8. Query evaluation pseudo-code

25

3.3.2 Enumerating All Objects in a Domain

To enumerate all objects in a domain, we extended the Self Virtual Machine with a new
primitive that scans the entire heap and returns a vector containing all matching objects. Since
the Self implementation already canonicalizes its internal type descriptarss [39]), it

ensures that all objects with the same object layout (i.e., the same slot names and, for constant
slots, slot contents) have the same type descriptor. Therefore, the primitive merely needs to find
all references to a particular type descriptor, a task that can be accomplished fairly quickly. The
cost of the primitive is dependent on the total size of the heap and the number of matches (i.e.,
the size of the result). On our test machine (a 200 MHz UltraSPARC workstation) the primitive
searches about 110 Mbytes per second and can return about 700,000 objects per second. Given
this speed, the primitive has never been a bottleneck in our system.

To find all objects of a type and all its subtypes, the system has to know the subtype tree. This
tree in Self is constructed as follows:

Iterate through all global objects.

Create two hash tables of all global objects containing object-parent pairs. Object table is
indexed by prototype objects, parent table is indexed by parents.

For each object o in the object table, get all its ancestors.

For each ancestor, look up the object-parent pair using the parent hash table.
Put the object o into the pair’s subtype collection.

This algorithm produces a table indexed by prototype objects. Each element of this table lists
prototype objects of all subtypes of a type. This subtype list is, however, imprecise because of
Self's support of multiple inheritance and convention-only placement and naming of “class”
objects [175]. Multiple inheritance gives additional subtypes of a given type. Objects and
“classes” invisible at the base level of global hierarchy will not be processed. Algorithm would
need to be extended to handle these cases.

Enumerating all objects of a domain can be achieved in different ways in different systems. The
implementation of the dynamic query-based debugger in Java uses two approaches. First
approach changes the Java Virtual Machine to provide an additional primitive returning all
instances of a certain class. This approach does not work if a Java Virtual Machine cannot be
changed. Second approach adds instrumentation to Java class files to call the debugger each
time an object of a monitored class is created. In this case, the debugger itself keeps track of
existing domain objects (section 4.3.4).

Some programming languages and systems provide a direct way to list all instances of a class.
For example, Smalltalk [75][77] provideslinstances: method. In other cases, like C++,
tracking objects of a class would be a difficult endeavor unless the debugger instrumented the
source code, or tracked only the framework classes [69][183].

26

Collection of Collection of
objectOutliners columnMorphs
Variable o Variable m

C1

(o morphs
includes: m)?,

Collection of tuples (o, m)
conforming to constraint
(o morphs includes: m

Collection of rowMorphs (02, m3)
Variable r (o1, m2)

\CZ

(m morphs
includes: r)?

Y

Collection of tuples (o0, m, r)
conforming to constraints
(o morphs includes: m) &&
(m morphs includes: r)

(o1, m1,rl)
(o1, m1, r2)

Figure 10. Overview of query execution
3.3.3 Overview of Query Execution

The debugger finds answers to a query by sequentially evaluating all constraints of the query for
the query’s domain variables. Constraint evaluation is similar to a relational database join
coupled with a selection. The initial inputs are individual domains, but during the evaluation
these domains are joined; consequently later evaluations consume tuples of objects. Figure 10
shows the query execution of the query

objectOutliner o; columnMorph m; rowMorph r.

(o morphs includes: m) && (m morphs includes: r)

27

This query consists of two constraints, each involving two of the three domain variables. The
first constraint(o morphs includes: m) consumes object outliners and column morphs as input;
the second constraint consumes tuples with object outliners and column morphs.

Following the evaluation procedure outlined in Figure 10, the system performs a chain of joins,
and ends up with a single output collection containing tuples with all objects. Since only the
tuples satisfying earlier constraints are passed along the chain, the output contains only tuples
satisfying all constraints. In our example, tuglels m1, r1) and(ol, mi, r2) conform to both
constraints and are results of the query.

The system could form the chain of joins in an arbitrary way, but some execution orders take

longer to process than others. In fact, for some queries the difference is more than an order of
magnitute—a bad join ordering may increase the evaluation time of a query from 2 seconds to
10 minutes (see section 3.4.3). Avoiding bad orders and finding good ones is necessary for an
acceptable tool performance. The next section investigates the problem of join ordering.

3.3.4 Join Ordering

The execution order of the individual joins of a query significantly influences overall
performance. To see why, consider the cost of a single join. The input size of a single join affects
its execution time, while its selectivity affects the input sizes of subsequent joins. (The
selectivity is the ratio of tuples that do not conform to the constraint to the number of input
tuples in the Cartesian prodtigtBoth the selectivity and the input sizes of a join depend on the
join ordering. In particular, evaluating joins with low selectivity at the beginning of a join chain
can produce large intermediate results that slow down the evaluation of subsequent joins. For
example, the Cartesian product of two 10,000-element relations produces a relation with
100,000,000 tuples. Such a relation would not only be costly to store but also very time-
consuming to use.

To optimize the query execution, we must minimize the intermediate results by finding an
optimal join ordering. There are no general algorithms that find an optimal join ordering in
polynomial time—in fact, this problem is NP-complete [93]. Several algorithms produce
optimal or near-optimal orders for restricted cases. For example, the KBZ algorithm [113]
computes optimal join orders for left-deep ordering where the join graph is acyclic (for cyclic
graphs the algorithm gives approximate results) assuming perfect knowledge of join sizes and
selectivities.

Numerous heuristics try to find near-optimal orderings [93][113][160][164]. One such heuristic
is theminimum-cost heuristithat performs the lowest-cost join first. It uses the size of the input
relations as the sole cost factor, with the join’s cost being the product of the inputs’ sizes for the
nested-loop join. The minimum-cost heuristic is based on the observation that performing

1 The database community uses an inverse terminology where “high selectivity” means “many tuples pass the selection”. We find
it more intuitive for “highly selective” to mean “only few tuples pass the selection”.

28

cheap joins in the beginning should shrink the intermediate result size, making the expensive
(large) joins at the end less expensive to perform.

In addition to using the minimum-cost heuristic, we impose a restriction on the join order by
usingleft-deep orderingLeft-deep ordering [153][160] requires each join to have one and only
one intermediate result relation as an input (Figure 11). Left-deep ordering increases the
probability of finding an efficient join order since it has a larger percentage of “good” orderings
in its search space [95][160]. It also simplifies incremental result delivery as explained further
below.

3.3.5 Maximum-Selectivity Heuristic

Another heuristic used to order joins is thaximum-selectivity heuristitt performs joins with

the highest selectivity first because such joins eliminate the most tuples and consequently
produce smaller input sizes for subsequent queries. Although the usefulness of selectivity has
been well-documented in the database literature [113], its use in the query-based debugging is
different. Queries asked during debugging typically have modest output sizes of a few dozen
objects, despite search domains that may encompass many thousands of tuples. This is not a
coincidence—programmers want to inspect the objects in the query result, and thus are unlikely
to pose queries that have large outputs. Consequently, the selectivity of a typical query is very
high (e.g., 99.99% of all tuples do not pass the condition).

The query-based debugger knows the precise input sizes of joins because all domains are
enumerated before determining the query evaluation order. However, the debugger does not
know the selectivities of the joins. To accurately estimate selectivity, the query optimizer would
have to sample a large number of tuples [79], a process that can negate the potential speedups
gained from better query ordering.

To improve query optimization, our system usegreciseselectivity information by randomly
choosing ten objects from each domain and evaluating the constraint for all tuples formed by
these objects. The number of tuples satisfying the constraint indicates the selectivity of the join.
While imprecise, this information still allows to distinguish highly-selective constraints
(selectivities larger than 0.80) from the constraints that have low selectivities (less than 0.50).

| Original collection Rl | Original collection R2

Join
| Intermediate collection | Original collection R3

| Intermediate collection [Original collection R4

/
‘ Result collection ‘

Figure 11. Left-deep join

29

We decrease the priority of the joins containing low selectivity constraints by multiplying their
cost by a factor of 100.

How large a sample should the system use to estimate selectivity? Larger samples allow more
precise estimates, but small samples reduce the cost of estimating the selectivity (and thus the
overhead of query optimization). We experimented with several sample sizes and found a
sample size of 10 to be a good compromise between accuracy and cost. On average, a sample
size of ten produces selectivity estimates with a standard deviation of 0.035, which is accurate
enough for our high-low distinction. Increasing the sample size to 100 reduces the standard
deviation to 0.01 but is 100 times more costly for a two-object constraint.

The debugger uses a modified minimum-cost heuristic that takes into account two-level (high-
low) selectivity estimates. For example, for the query

cecil_method a b; cecil_formal c d.

(a formals includes: c) && (b formals includes: d) &&

(c name =d name) && (c I=d) && (a!=b)

the minimum-cost heuristic alone would choose to evaluate the constraints in the following
order: (c name = d name), (b formals includes: d), (a != b), (a formals includes: c), (c !=d),
resulting in a query execution time of 37 seconds. By using selectivity estimates the system
recognizes that the joia != b) has a low selectivity and should be evaluated as late as possible.
Consequently it chooses a different evaluation ordefc name = d name),

(b formals includes: d), (a formals includes: c), (a!=b), (c !=d). This improved evaluation order
reduces the query execution time to 5.9 seconds.

The dynamic query implementation uses a different join ordering heuristic. Because sizes of
domains change during program runtime, and we cannot efficiently determine the selectivities
of constraints for changing domain sizes, we simplify the heuristic for join ordering: the
systems executes selections first, equality joins next, and inequality constraints last
(section 4.3.5.1).

3.3.6 Hash Joins

Many query constraints have the foore B, wherea andp are expressions involving two
different domains. In such cases, the system can compute the corresponding joirhashrg a
join method instead of using a less efficient nested-loop method [53][135]. Consider the
following query about Cecil structures:

cecil_named_object n; cecil_top_context t;

cecil_object_binding o.

(n defining_context = t) &&

(t varBindings includes: 0) && (o value = n)

30

cecil_named_object collectio¢
nl n3

n defining_context

‘ slot 1 ‘ slot 2 ‘ slot 3 ‘ slot4‘
hash table

t2
Cecil top context collection

Figure 12. Hash join

In this Cecil query, we can use a hash join to evaluaténtthefining_context = t) constraint.

Hash joins do not affect the join semantics; they are simply a more efficient way to evaluate a
join.

To evaluate a constraint using a hash join, we first construct a hash table that maps all result
values of expressianto the domain variable(s) that produced these refufggure 12, which

uses the above example, the hash table maps contexts (the results of applying
n defining_context expression to objectsl andn3) to cecil_named_object objectsnl andn3.

Then, we evaluate the expressfofor each object of the domain on the right-hand side of the
equality and probe the hash table with each result. If the probe is successful (i.e., if the hash
table contains one or more tuples that evaluated to the same value using expjesdiaf

these tuples are added to the result because they satisfy the candifoin Figure 12, the
cecil_top_context objectt2 is mapped to the same slot as tleil_named_object n3, and

t2 = n3 defining_context. Consequently, the tup{e3, t2) satisfies the constraint and belongs to

the result. Using the hash join method, the join result can be constructed with a single scan
through all tuples ifg's domain.

On average, hash joins are more efficient than nested loop joins because they execute in
O(Ja] + B]) time if the output is small, compared todD{ |B|) time required for a nested loop

join regardless of the output size. (If the output is close to the size of Cartesian product then the
cost of a hash join will also be @[} |8])). Our join ordering algorithm used |+ B| to estimate

the cost of a hash join. For example, if there areedl_top_context objects and 69
cecil_named_object objects, the estimated cost of the hash (oifefining_context = t) is 73.

The experiments in section 3.4.5 demonstrate that hash joins can improve performance for
some queries.

In the debugger implementation of a join chain, each join may be a nested-loop join, a hash join,
or a selection. Since the join type is decided dynamically and depends on its position in the

31

chain, the constraint objects in a join chain are assigned the join type throughirifigie
field. This implementation decision uses a Strategy design pattern [67][68].

3.3.7 Incremental Delivery

Because a query-based debugger is a part of an interactive programming environment, we
would like to achieve interactive performance for the widest possible class of queries. But
sometimes it is impossible to compute the entire query result within a short time, for example,
the input relations may be very large or the individual query expressions may involve time-
consuming operations. Incremental delivery improves the response time of long-running
gueries by delivering the first result(s) as quickly as possible, so that the user can inspect them
while the rest of the result is being computed. To achieve this goal, we developed a technique
that dynamically adjusts the CPU time allocated to individual constraints to produce the first
result as quickly as possible.

In our system, each join executes as a Self thread and is connected to the next join by a limited-
size intermediate result buffer. The intermediate result buffer is implemented using a circular
buffer. Figure 13 shows buffers of size 4, and both buffers contain two tuples. This arrangement
resembles a pipeline where intermediate results flow along the pipeline toward the next
constraint. As in the classical producer-consumer problem, a thread in the pipeline blocks when
its output buffer is full or when its input buffer is empty. Whenever a thread blocks, the query
scheduler picks the next thread to run. By keeping the size of the intermediate buffers small—
on the order of 100 elements—the system can “push” intermediate results down the pipeline
towards the output before early joins compute their complete results.

The join threads must be scheduled correctly to minimize the response time. We use a simple
gueue scheduling scheme that prefers threads closer to the end of the pipeline. As a result,
intermediate results flow towards the end of the pipeline because consumers closer to the end
will run before joins earlier in the pipeline will produce new intermediate results. For example,

in Figure 13 the thread executing join C1 will block when it fills the remaining slots in the
intermediate buffer or when it finishes scanning through input collections. Then the scheduler
will select and run the thread executing join C2 because it is closer to the end of the pipeline and
it has non-empty input and non-full output buffers.

Although the thread pipeline itself increases the speed of output generation, we optimize it
further by time-slicing the threads. Time-slicing prevents a slow (or highly selective) join at the
beginning of the pipeline from running for a long time before filling its output buffer. Without
time-slicing, if the first join does not completely fill its output buffer it would run to completion
before a thread switch occurs, and the first query output would not appear before the entire first
join is completed. Instead, the scheduler preempts threads after they have used up their time
slice and schedules the new highest-priority thread. Thus, if the first join produced any
intermediate results during its time slice, these results are pushed down the pipeline, shortening

32

Collection of Collection of
objectOutliners columnMorphs
Variable o Variable m

(o morphs
includes: m)?,

Buffer of tuples (o, m)

Collection of rowMorphs (02, m3)
Variable r (o1, m2)

N

(m morphs
includes: r)?

Y
Buffer of tuples (o, m, r)

(o1, m1,rl)
(o1, m1, r2)

Figure 13. Incremental delivery pipeline

the time to produce the first result. To keep thread switching overhead low, we keep time slices
reasonably long (e.g., 100 ms per slice).

Time-slicing and pipelining work best in concert. Using just time-slicing without thread
priorities would lead to inefficient thread scheduling. Omitting limited size buffers would result
in additional memory overhead when intermediate results are large.

3.3.8 Related Work

The query optimizations discussed in section 3.3.4 were influenced by research in the area of
databases. Ullman [170][171][172] discusses basic insights about efficient join evaluation. De
Witt et al. [53] and Lehman and Carey [121] indicate that the hash-join algorithm is efficient in
main memory databases, a fact that we used in our implementation. Debugger hash joins are
different from the database hash joins because the left-hand side and the right-hand side of
equality constraints have to be evaluated for hash table indexing. Regardless of this difference,
the cost formula is preserved, and hash joins are efficient for debugging queries. For inequality

33

joins, an efficient sort-merge join [121] could be used, but it has not been implemented in our
system. Numerous researchers [40][93][96][97][113][136][160][164][194] have developed
algorithms to find optimal or near-optimal join orderings. Ibaraki and Kameda [93] proved that
join ordering problem is NP-complete by reducing CLIQUE [70] to it. The authors also
proposed an optimal left-deep join ordering algorithm for acyclic join graphs (for cyclic graphs
the algorithm gives approximate results). The KBZ algorithm [113] improves on lbaraki and
Kameda'’s algorithm. Steinbrunn, Moerkotte and Kemper [42][160] investigate and compare a
number of heuristic and randomized algorithms. Swami and others [162][163][164] investigate
and propose heuristic and randomized algorithms improving on the KBZ algorithm. Current
databases use the exponential exhaustive search of all possible join orders when the number of
joins in a query is small. Query-based debuggers also may be able to use this approach.

Unfortunately, the proposed algorithms assume perfect knowledge of join sizes and
selectivities. Also, the characteristics of a query-based debugger are different from databases—
the number of objects per domain is smaller than in databases, but all objects reside in the main
memory, so input/output time is not a factor. On the other hand, debugger queries may contain
calls to expensive methods. Due to the uncertainty of selectivities and single join costs, the
debugger uses simple heuristics drawn from the experience with debugging queries.

3.4 Experimental Results

We tested the debugger on a number of realistic and synthetic queries. For our tests we used an
otherwise idle Sun Ultra 2/2200 machine (with a 200 MHz UltraSPARC processor) running
Solaris 2.5.1 and a modified version of Self 4.0. Execution times reported are elapsed times.
Times were measured with millisecond accuracy. We observed a variance of about 10% in the
measurements due to various asynchronous events in the Self VM and user thread scheduling
effects. We also measured the total CPU time to verify that no other processes disrupted the
measurements. We chose the lowest time observed during three repetitions of a measurement.

3.4.1 Benchmark Queries

We ran the tests using both realistic queries as well as artificial queries. Table 1 lists the queries
and their sizes. We selected a number of realistic queries and tried to present a fair sample in
terms of query complexity, query evaluation methods, and query input and output sizes. The
realistic queries (1-12) dealt with inputs ranging from 10 to 1,000 objects per type (see
Table 1). Queries 1-8 involve the Self GUI, and queries 9-12 involve the Cecil compiler.

To test the limits of the debugger’s performance, we also evaluated difficult synthetic queries
(queries 13-19) that are less likely to be asked in real life. These queries involved larger inputs
that contained tens of thousands of objects (except query 18). Some of them were difficult to
evaluate efficiently because the system could not use hash joins (query 17), or because they had
an empty result set (query 15), where incremental delivery techniques did not help. Queries 18

34

and 19 are realistic but time-consuming, so they were grouped together with other queries that
place considerable stress on the debugger’s performance.

Query Input | Outpu
1. morph ab c. (a morphs includes: b) && (c morphs includes: b) && (a !=c) 37*37*37 0
2. objectOutliner a; rowMorph b; columnMorph c. (a morphs includes: b) && 12*146*370 0
(b morphs includes: c)
3. objectOutliner a; rowMorph c; columnMorph b. (a morphs includes: b) && 12*146*370 1
(b morphs includes: c)
4. objectOutliner a; columnMorph b. (a morphs includes: b) 12*370 11
5. objectOutliner a; rowMorph b. (a morphs includes: b) 12*146
6. objectOutliner a. (a morphs size = 0) 12
7. objectOutliner a; smallEditorMorph b. (a titleEditor = b) && (b owner = a) 12*16
8. objectOutliner a; columnMorph b; labelMorph c. 12*370*1006 0
(a morphs includes: b) && (c owner = b) && (a moduleSummary = c)
9. cecil_named_object a; cecil_top_context b; cecil_object_binding c. 69*4*79 68
(a defining_context = b) && (b varBindings includes: c) && (c value = a)
10. cecil_named_type a. (a instantiations size != 0) 198 0
11. cecil_named_type a. (a subtypes size != 0) 198 3
12. cecil_method a. (a resultTypeSpec printString = 'int’) 167 2
13. point a; rectangle b. (a x = b origin y) && (a x = 6) 11195*4579 6,780
14. pointa. a x = 256 11195 2
15. point a; rectangle b b1. 11195*4579* B
(a x = b origin y) && (b height = b1 height) && (b != b1) && (b1 height = 1000) | 4579
16. point a; rectangle b b1. 11195*4579* 12,467
(ax =borigin y) && (b height = b1 height) && (b !=b1) && (b1 height > 1000) | 4579 '
17. rectangle b b1. (b height > (b1 height + 800)) && (b width < (b1 width - 900)) | 4579*4579 0
18. cecil_method a b; cecil_formal c d. 167*167*179
(a formals includes: c) && (b formals includes: d) && (c name = d hame) && (c '+879 7042
&& (a!=h)
19. mutableString a. (a asSlotlfFail: [abstractMirror]) isReflecteeSlots 15540 11,281

Table 1: Sample queries with their input and output sizes
Queries can be divided into the following broad classes:

» Queries 6, 10, 11, 12, 14, and 19 are simple one-constraint selection queries. Since these
gueries along with queries 4 and 5 have only one constraint, their evaluation time does not
depend on join optimization.

* Queries 1, 2, 5, 7, 8, 10, 15, and 17 are assertion queries that have an empty result set.
Incremental delivery techniques do not affect their response time.

* Queries 7, 8, 9, 13, 15, 16, and 18 have some equality constraints that can be evaluated
using hash joins, while the other queries use only nested-loop joins.

35

20.7 5.9

O Completion Time

O Response Time

W Translation Time

E Primitive Time

2.5

N
o
|

Time (sec.)
-
(6]
|

1.0]

NF

4

I I I I I I I
8 9 0 11 12 13 14 15 16 17 18

Query number

Figure 14. Query execution times

HﬁHH e i iiLl

3.4.2 Execution Time

Figure 14 shows the execution times of all queries, split into four components:

 Primitive time the time spent computing the input domains of the query using the primitive
described in section 3.3.2.

 Translation timethe time spent choosing a query evaluation order and generating the code
to execute the query.

» Response timéahe time spent producing the first result (not including the time needed to
display it in the graphical user interface). For queries producing an empty answer, the
response time includes the entire query evaluation because the user has to wait until the end
of the query evaluation to learn the outcome.

» Completion timethe remaining execution time needed to complete the query and produce
all results.

For example, for query 16, it took less than 0.2 seconds to collect all points and rectangles, and
less than 0.1 seconds to translate the query into Self code. The first result appeared after an
additional 0.7 seconds, and it took another 1.2 seconds to complete query evaluation.

Overall, the results are encouraging, with most of the realistic queries (1-12) taking less than a
second to evaluate. For these queries, the median response time was 0.33 seconds, and the
median completion time was 0.33 seconds. Query 18 was the only realistic query that took a
long time to evaluate, but even there the first result appeared in less than a second.

36

Some of the artificial queries (13-16) also executed in the subsecond range. For these queries,
the median response time was 0.89 seconds, and the median time to complete the query was
1.14 seconds. Query 17 took 20.7 seconds to complete. This query is difficult for the system to
evaluate efficiently because it does not contain equality constraints. Consequently, the system
can not use hash joins. The debugger had to execute a nested-loop join 454979
rectangles, evaluating the first constraint 21 million times. Query 19 took 2 seconds to
complete. This query is a simple selection query, but it performs a time-consuming operation—
compilation of the Self code string—for each mutable string.

We found that many queries had such enormous outputs that our machine ran out of memory
trying to produce results. Usually, such queries are asked by mistake, since the programmer
probably would not want to look at millions of tuples in a result. A straightforward restriction
on the result size eliminates system crashes and alerts users to this type of mistake.

3.4.3 Join Ordering

To see how well the query optimizer works, we compared its performance against the best and
worst join orderings. In this experiment, we executed the queries using all possible left-deep
orderings that perform selections first. Such orderings correspond to the search space of our join
ordering algorithm. In all cases, the best ordering in this search space was indeed the globally
optimal ordering, so the search space limitation did not influence the results. We did not include
gueries with only one constraint in this experiment.

Figure 15 compares the best and the worst query completion times to the completion time using
the ordering found by our system. The results show that query optimization works well for
small querie} but the join ordering does not matter very much for such queries since even in
the worst case they take less than a second to execute.

However, larger and more complicated queries have much wider range of best and worst times
(Table 2). Queries 16 and 18 clearly demonstrate the need for join order optimization. Our
system evaluates query 16 in 2.2 seconds, but the worst-case execution time is more than 10
minutes. Our system does not perform optimally all the time; it sometimes finds fairly bad

1 Sometimes, though, the debugger has an execution time slightly higher than the “worst” one due to the optimization overhead
and random system events.

37

3.5

2.5

1.5+

Completion time (sec.)

05— ¢

e

° Actual Time

A Worst Time

Best Time

»

Query number

I
15

Figure 15. Completion time depending on join ordering
(small queries)

orderings, but the outcome of the join ordering may be cushioned by the incremental delivery

methods discussed later.

Query number Best Actual Worst
16 11 2.2 631
17 17 20.7 27.2
18 3 5.9 130

Table 2: Completion time depending on join ordering

3.4.4 Incremental Delivery

(large queries)

Incremental delivery significantly reduces the response time of the system. For example, query
18 took 5.9 seconds to complete but produced the first result in less than a second. Overall, the
response time ranged from 12% to 100% of the completion time with a median of 87% (recall
Figure 14). Excluding queries with empty answer sets (which cannot benefit from incremental
delivery) the median ratio is 73%, i.e., incremental delivery reduces the waiting time for the

programmer by about 27%.

The use of incremental delivery also limits sizes of intermediate collections. For example,

guery 18 runs out of memory when executing in non-incremental mode because it produces
enormous intermediate results. In incremental mode, it evaluates successfully because
intermediate result sizes are limited by buffer sizes.

38

To check the influence of time-slicing on the response time of different queries, we evaluated all
queries using time slices ranging between 100 ms and infinite time slice. The experiments
showed that time-slicing does not have visible effect on most queries. However, time-slicing
becomes important for large queries with small result sets. For example, if we take assertion
query 17 that has an empty result set, and add an object to the system that violates the assertion,
the query execution pattern changes. The assertion originally took 20 seconds to verify, but the
object violating the assertion is found early in the execution. Consequently, the response time
is 3 seconds, while the completion time remains 20 seconds. If the time-slicing is disabled, the
first join in the query does not fill the intermediate buffer, so no thread switches occur almost
until the end of the execution. As a result, without time-slicing the response time becomes equal
to the completion time of 20 seconds.

In summary, incremental delivery can substantially shorten the response time; large queries and
queries with nested loop joins benefit most from incremental delivery. Time-slicing is a useful
enhancement when dealing with large queries.

3.4.5 Hash Joins

Many queries can use hash joins to avoid computing the full Cartesian product. But as explained
in section 3.3.5, some joins must be computed the hard way, using nested loops. How much
slower are such joins? To answer this question, we re-executed all queries that use hashed joins
with hashing disabled. Table 3 shows the slowdowns of these query evaluations. In our test
system, slowdowns ranged from 0.6 to 2 with a median of 0.98. Query 15 experienced a
speedup because the optimizer found a better join ordering for nested-loop joins than the one
used for hash joins. When we increased the size of each relevant domain by five times to
simulate a system with five times more objects than the original Self system, the slowdowns
became substantial (right column of Table 3), ranging from 0.32 to 15.6 with a median of 1.97.
The evaluation of query 18 was faster using nested-loop joins in the small system, but much
slower in the large system. Query 16 had almost the same evaluation speed regardless of join
method.

The results of these preliminary experiments indicate that hash joins can be more efficient than
nested-loop joins, although they slow down several of our test cases. With large input domains,
the performance advantage of hash joins can exceed an order of magnitude (e.g., in query 18).

Fortunately, even if hash joins could not be used, incremental delivery can mask much of the
nested-loop join overhead by producing the first result quickly. Table 4 shows the response
times both with and without hashing. For these queries the first results can be produced in less

39

Query Original | 5x larger

number system | system
7 0.93 1.13
8 1.18 1.97
9 2 6.42
13 1.94 5.76
15 0.63 0.32
16 0.98 0.91
18 0.6 15.6

Table 3: Slowdown of nested queries vs. hash queries

than a second, and the response time varies by less than a factor of two between the two
configurations.

Query number| Nested (set.) Hash (sec.) Ratio
7 0.33 0.35 0.93
8 0.7 0.6 1.18
9 0.7 0.5 1.46
13 0.89 0.96 0.92
15 0.5 0.8 0.63
16 0.93 0.98 0.95
18 0.72 0.92 0.78

Table 4: Response time (time to first result)

3.5 Related work

Queries containing only object references can be rephrased in a graph-theoretical form [122].
Consider a class of queries in which objects relate to other objects only through references, i.e.,
consider situations where object constraints do not contain method or expression evaluations.
Answering such a query is equivalent to finding a subgraph conforming to the given referential
constraints in a graph formed by the runtime objects as nodes and their references as edges. We
call the problem of finding such subgraphs the Generalized Pattern Matching (GPM) problem.
This problem is a special case of Subgraph Isomorphism [70] that significantly differs from the
general problem because the outgoing edges of a vertex have unique labels—a restriction
arising from the fact that object fields referring to other objects have unique names. We proved
the GPM problem to be NP-complete even for bipartite graphs with only two outgoing edges
(Appendix A). We did not further pursue the graph approach because queries are more
expressive.

40

3.6 Summary

Query-based debugging allows programmers to ask queries about the program state, helping to
check object relationships in large object-oriented programs. Our implementation of the static
guery-based debugger combines several novel features:

* A new approach to debugging: Instead of exploring a single object at a time, a query-based
debugger allows programmers to quickly extract a set of interesting objects from a
potentially very large number of objects, or to check a certain property for a large number
of objects with a single query.

« A flexible query model: Conceptually, a query evaluates its constraint expression for all
members of the query’s domain variables. The present model is simple to understand and
to learn, yet it allows a large range of queries to be formulated concisely.

« Good performance: Many queries are answered in one or two seconds on a midrange
workstation, thanks to a combination of fast object searching primitives, query
optimization, and incremental delivery of results. Even for longer queries that take tens of
seconds to produce all results, the first result is often available within a few seconds.

41

42

4 Dynamic Query-Based Debugger
“A little help at the right time is better than a lot
of help at the wrong time.”
Tevye

“Good information is hard to get. Doing
something with it is even harder!”
L. Skywalker

4.1 Introduction

Many program errors are hard to find because of a cause-effect gap between the time when the
error occurs and the time when it becomes apparent to the programmer by terminating the
program or by producing incorrect results [58][59][60]. The situation is further complicated in
modern object-oriented systems which use large class libraries and create complicated pointer-
linked data structures. If one of these references is incorrect and violates an abstract relationship
between objects, the resulting error may remain undiscovered until much later in the program’s
execution.

For example, consider a possible error injaha& Java compiler discussed in section 2. What
would happen if an abstract syntax tree (AST) built during a compilation is corrupted by an
operation that assigns the same expression node to thegfietf two different parent nodes
(Figure 16). The parent nodes may be instances of any subclassar@Expression; for

BinaryExpression 1

right E— Expression 1

_>
BinaryExpression 2 j
right — Expression 2

Figure 16. Error injavac AST

example, the parent may bearignAddExpression 0bject or aivideExpression object, while the

child could be amdentifierExpression. The compiler traverses the AST many times, performing

type checks and inlining transformations. During these traversals, the child expression will
receive contradictory information from its two parents. These contradictions may eventually
become apparent as the compiler indicates errors in correct Java programs or when it generates
incorrect code. But even after discovering the existence of the error, the programmer still has to
determine which part of the program originally caused the problem. How can we help
programmers to find such errors as soon as they occur?

As discussed in section 2, data breakpoints [180], conditional breakpoints [109], and other
conventional tools do not help in finding {hec error. A more effective way to check an inter-

43

object constraint would be to combine conditional breakpoints with the static query-based
debugger described in section 3 [123]. A static query-based debugger (SQBD) finds all object
tuples satisfying a given boolean constraint expression. For example, the query

BinaryExpression* el, e2. el.right == e2.right && el != e2

would find the objects involved in the abgseac error. The breakpoints would then carry the
condition that the above query return a non-empty result. Unfortunately, even well-optimized
SQBD executions would be inefficient for this task. With hundreds or thousands of
BinaryExpression Objects, each query becomes quite expensive to evaluate, and since the query is
reevaluated every time a conditional breakpoint is reached, the program being debugged may
slow down by several orders of magnitude. (This claim is substantiated in section 4.4.3.1.)

To overcome this inefficiency, we extend the query-based debugging tadgamicqueries

[124]. In addition to implementing the regular QBD query model, a dynamic query-based
debugger continually updates the results of queries as the program runs, and can stop the
program as soon as the query result changes. To provide this functionality, the debugger finds
all places where the debugged program changes a field that could affect the result of the query
and uses sophisticated algorithms to incrementally reevaluate the query. Therefore, a dynamic
guery-based debugger finds theac AST bug as soon as the faulty assignment occurs, and it
does so with a minimal programmer effort and a low program execution overhead.

We have implemented such a dynamic query-based debugger for Java. Our prototype is portable
(written in 100% pure Java) and surprisingly efficient. Experiments with large programs from
the SPECjvm98 suite [158] show that selection queries are very efficient for most programs,
with a slowdown of less than a factor of two in most experiments. Through measurements, we
determined that 95% of all fields in the SPECjvm98 applications are assigned less than 100,000
times per second. Using these numbers and individual evaluation times, our performance model
predicts that selection queries will have less than 43% overhead for 95% of all fields in the
SPECjvm98 applications. More complicated join queries are less efficient but still practical for
small query domains or programs with infrequent queried field updates.

4.2 Query Model and Examples

Dynamic query-based debugging uses the query model from section 3.1 adapted for Java syntax
and semantics. Consider anotfagsc query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd

The first part of the query is tleearch domairof the query, and should be read as “find all
FieldExpressiont and all FieldDefinitionsi in a system such that..FieldExpression is a class

name and its domain contains all instances of the class. If a “*” symbol in a domain declaration
follows the class name (as in faeac query discussed in the introduction), the domain includes

44

Molecule collision

Gas tank Q O
O

Molecule | @ Q QO Q)

Figure 17. Error in molecule simulation

all objects of subclasses of the domain class; otherwise the domain contains only objects of the
indicated class itself.

The second part of the query specifies the constraint expression to be evaluated for each tuple
of the search domain. Constraints are arbitrary Java conditional expressions as defined in the
Java specification 8§15.24 [78] with certain syntactic restrictions. Expressions should not
contain variable increments which have no semantic meaning in a query. The debugger
currently does not handle array accesses. Constraints can contain method invocations; we
assume that these methods are side-effect free.

As for the static queries, the expression will be evaluated for each tuple in the Cartesian product
of the query’s individual domains, and the query result will include all tuples for which the
expression evaluates to true. Conceptually, the dynamic debugger reevaluates a query after the
execution of every bytecode, ensuring that no result changes are unnoticed. The debugger stops
the program whenever the result changes. In reality, the debugger reevaluates the query as
infrequently as possible without violating these semantics. In addition, the debugger will
reevaluate only the part of the query that changed since the last evaluation. We describe the
incremental reevaluation technique in detail in section 4.3.5.1.

The dynamic query debugger does not allow to query temporal properties of the objects. For
example, the queries cannot find token objects that changed their valuechiamr@rToken to

the UninitializedToken. Such functionality would involve using temporal logic operators and is
beyond the scope of this thesis.

4.2.1 lIdeal Gas Tank Example

For another example illustrating the need for dynamic query debuggers, consider an applet
simulating a tank with ideal gas molecules (Figure 17). Although this applet is a simple
simulation of gas molecules moving in the tank and colliding with the tank walls and each other,

45

Instrumented

Java
Custom Standard Javg | Query
class loade results
Query string Custom
and change debugger code
set
Debugger
library code

Figure 18. Data-flow diagram of dynamic query-based debugger
it has some interesting inter-object constraints. First, all molecules have to remain within the
tank, a constraint that can be specified by a simple selection query:

Molecule* m. m.x <0 || m.x>X_RANGE || m.y<0|| my>Y_RANGE

Another constraint requires that molecules do not occupy the same position as other molecules.
Even this simple application may violate the constraint in different places: in the regular
moleculemove method, in a method that handles molecule bounces from the walls, and so on.
The following query discovers the constraint violation:

Molecule* m1 m2. mlx==m2.x && mly==m2.y && ml!=m2

This constraint is interesting because its violation is a transient failure. Transient failures
disappear after some period of time, so even though the program behaves differently than the
programmer expected, queries will not be able to detect failures if they are asked too late. The
molecule collision error is such a transient failure—it will disappear as the molecules continue
to move. However, the applet will behave erroneously: for example, molecules that should have
collided with each other will pass through each other. Dynamic queries are necessary to find
transient failures, as a delayed query reevaluation may fail to detect the error entirely.

4.3 Implementation

We have implemented a Java dynamic query-based debugger in pure Java. Java contains a
number of features that simplified the implementation. We used the ability to write custom class
loaders [125] to perform load-time code instrumentation. Java’'s bytecode class files proved
simple to instrument. The debugger creates custom query evaluation code by using load-time
code generation. The debugger can be ported to other languages (e.g., Smalltalk) that have an
intermediate level format similar to bytecodes. We discuss issues of such implementation in
section 4.3.6 and section 4.3.7.

4.3.1 General Structure of the System

Figure 18 shows a data-flow diagram of the dynamic query-based debugger. To debug a
program, the user runs a standard Java Virtual Machine with a custom class loader. The custom
class loader loads the user program and instruments the bytecodes loaded, by adding debugger

46

invocations for each domain object creation and relevant field assignment. The class loader also
generates and compiles custom debugger code. After loading, the Java virtual machine executes
the instrumented user program. Whenever the program reaches instrumentation points, it
invokes the custom debugger code, which calls other debugger runtime libraries to reevaluate
the query and to generate query results. The debugger currently does not handle multithreaded
code.

Logically, the program control flow can be divided into four important sections:

« Shell—the Java wrapper program that takes the class name and arguments of the original
program together with the query string. This section of the system creates a custom class
loader instance, loads the program using this class loader, and starts the execution through
the reflection interface.

* Class loader—loads the program class and all classes requested by it as defined in section
2.16 of theJava™ Virtual Machine SpecificatiofL27]. During loading process, instruments
class files as described below.

* Original program—executes the original program invoking the debugger at instrumentation
points.

» Query evaluator—parses the query expression using a JLex [23] generated lexer and a Java
Cup [91] generated parsefl2], creates runtime structures for query evaluation, and
evaluates the query using them when it is invoked from the original program.

The rest of this section discusses the most important parts of the debugger in more detail: how
the debugger instruments a Java program, what parts it instruments, and how it evaluates a

query.

4.3.2 Java Program Instrumentation

To enable a dynamic query for a program, the user specifies a query string. The debugger then
instruments class files to invoke the debugger after all events that may change the result of the
guery. The debugger finds assignments to the fields referenced in the query change set

1 The parser uses a restricted Java expression grammar extracted from the full Java grammar [30].

47

public final class DebuggingCode implements RunTimeCode {
public static void debug(Molecule updatedObject, int newValue) {
X += updatedObject.x = newValue; // replaces putfield 37
QueryTool.runTool(updatedObiject); // invokes query evaluator
}
¢ Compile

}

22: iadd Load and instrument |22: iadd |
23: putfield 37 p-| 23: invokestatic debug L —
26: aload_0 26: aload_0

Figure 19. Java program instrumentation
(section 4.3.3) and inserts debugger invocations after each one of them. The system also inserts
debugger invocations after each call to a constructor of a domain object.

Figure 19 shows an example of the instrumentation process for a Java method. To instrument
class files, the loader transforms them in memory into a malleable format using modified class
file handling tools borrowed from the BCA class library [106]. The BCA class library provides
functionality to read a class file and parse it in memory into data structure representing its parts:
constant pool, fields, methods, interfaces, and attributes. The program handles the class file
format described in section 4 @he JavaM Virtual Machine Specificatiofil27]. We have
extended the framework to parse structures that were not modified in the original BCA, to
convert method bytecodes into objects and back into a byte array, to add changes to the constant
pool and to the method code, and to write the instrumented class file back to the disk.

The instrumentation method iterates through the code of all class file methods searching for
field assignments and object creations that have to be instrumented. In a Java class file, the
method code is stored in tbede attributeof the method. The debugger transforms a byte array

of code into a list oBytecode objects, instruments the code by changing or adejrgode

objects, and transforms it back into a byte array using the Visitor design pattern [68]. During the
instrumentation, the debugger preserves code validity by adjusting branch targets and exception
handlers. After instrumentation, the instrumentation program updates the code length and the
stack size of a method.

Iterating through the method code, the debugger findsu#idlld bytecodes anahvokespecial
bytecodes. The loader determinesatield bytecodes that assign to the fields of interest—like
field x in Figure 19—and replaces thgsefield bytecodes wittnvokestatic bytecodes invoking
the debugger. The system also inserts such debugger invocations afterokegiecial call to

a constructor of a domain object.

The debugger determines thatuield bytecode should be instrumented by checking the type
of the field assigned by the bytecode in the constant pool of the class. In Figure 19, the debugger
would inspect the constant pool entry 37, and realize that the bytecode assigns tosttué field

48

theMolecule class. When the debugger replacgstild bytecode with amvokestatic call, it also

inserts the method name and type information about the inveked method of the
DebuggingCode class into the constant pool of the instrumented classddiug method is
different for each domain (change set) class, so its type information dependspatiiethe
replaced. Thalebug method takes two arguments: the object thatpthild would have
updated—aviolecule object in Figure 19—and thewvalue value to be assigned to the object
field—in this case an integer number. These objects are already on the stack before the
execution of theutfield, so they will be correctly passed as arguments taetiig method, and

the debugger does no stack manipulation of the instrumented method. The debugger also does
not use additional local variables, avoiding data-flow analysis.

Since the originaputfield has been replaced by tiveokestatic bytecode, the customebug

method performs the assignment originally executed byutield. The debugger determines

the name of the assigned field and the correct types of objects and values from the class file's
constant pool.

To monitor object construction, the debugger inserts a debug method invocation after each
bytecode that constructs a domain object. In Java class files, the objects are created in two
stages. First, a new object is created usingétvébytecode. Then, the constructor method is
invoked using theinvokespecial bytecode. According toThe JavaM Virtual Machine
Specification([127] section 4.9.4), the object cannot be used between the creation of the
uninitialized object and its initialization. Consequently, we insert debugger invocations after the
constructor termination. This approach misses query violations occurring in constructors.
However, it may be argued that the values in the fields of uninitialized objects are not legal, so
guery evaluation with them would not follow the intentions of the programmer. It may be
possible to safely insert debugger invocation in the middle of constructor method after object
fields are initialized to their “correct” initial values, but before any other housekeeping in the
constructor. The data-flow analysis of the constructor methods necessary for such
instrumentation could be done in the full-fledged implementation of a query-based debugger.

The debugger invocation after tineokespecial bytecode is similar to the one described above

for invocations replacingutfield bytecodes. However, in this case the debugger inserts an
additionaldup bytecode to duplicate the created object reference on the stack. This reference is
the only parameter passed to the debugging method. To account for additional duplication on
the stack, the maximal size of the stack is increased.

After instrumentation, the class loader transforms the code back into the class file format and
passes the image to the defailitneClass method.

The class loader instruments assignments and object constructors that influence the query
result. The next section describes how the debugger determines which assignments and
constructors to instrument.

49

4.3.3 Change Monitoring

The dynamic query debugger updates the query result every time the debugged program
performs an operation that may affect the query result. Thus, the program being debugged has
to invoke the debugger after every event that could change the query result. The query result
may change because some object assigns a new value to one of its fields or because a new object
is constructed. However, not all field assignments and object creations affect the query. We call
the set of constructors and object field assignments affecting the results of a query the query’s
change setAlthough we can use all assignments and all constructors as a conservative change
set for any query, we are interested in a minimal change set for efficient query evaluation. Such
a change set contains only constructors of domain objects and assignments to domain object
fields referenced in a query. The change set is used by the class loader to determine which
assignments and constructors it should instrument.

Consider thevolecule query:
Molecule* m1 m2. ml.x==m2.x && mly ==m2.y && ml!=m2

The change set of this query consists of the constructors @béuwele class and its subclasses
as well as assignmentsnmlecule fieldsx andy. Assignments to other molecule fields such as
color do not belong to the change set.

The change set of a query becomes complicated if constraints contain a chain of references.
Consider a query for the SPECjvm98 ray tracing program:

IntersectPtip. ip.Intersection.z <0

The Intersection field is aPoint object, and the query result depends on italue. The query
result may change if thevalue changes, or if a new value is assigned ttni#eection field.
Furthermore, theoint object referenced by thetersection field may be shared among several
domain objects. In this case, a change inraire object can affect multiple domain objects. A
chain of references also occurs when a domain instance method invokes methods on objects
referenced in its fields, and these methods in turn depend on the fields of the receiver. The
process of tracking which objects accessed through a chain of field references influence which
domain objects becomes a complicated task; for example, to do it efficiently, nested objects
need to point back to the domain objects that reference them. To simplify the prototype
implementation, we support only explicit chains of references in the query, and we do not
handle methods that access chains of references. Our debugger rewrites the query by splitting
the chain into single-level accesses and by adding additional domains and constraints. For
example, the ray tracing query above is rewritten as:

IntersectPt ip; Point* ___Intersection.

ip.Intersection == __Intersection && __Intersection.z < 0

Chain reference splitting adds overhead by introducing additional joins into the query but it also
allows users to ask more complex queries. The overhead can be an order of magnitude when a

50

selection query is rewritten as a join query. We do not handle native methods because their
debugging is outside the scope of a Java debugger.

The change set is determined automatically by examining the query string. First, the domain
classes are added into thenitoredClasses structure. Second, the fields of domain classes
referenced in the query are added to mhmitoredFields collection of the corresponding
MonitoredClass instance. If fields are inherited from superclasses, these classes are also added to
the MonitoredClasses collection with fields referenced. Method invocations are not handled
automatically, but users can specify fields used by the query methods by hand.

To summarize, we use the change set of the query to instrument the Java program. The
instrumented program calls the debugger after every event that could change the result of the
guery, and the debugger reevaluates the query during each call.

4.3.4 Domain Collection Maintenance

Unlike the static query-based debugger implementation (section 3.3.2), the dynamic query-
based debugger does not request the Virtual Machine to provide all objects of query domains at
each query reevaluation. Even if such functionality was available, its efficiency would be low.
Instead, the debugger tracks all domain objects by maintaining domain object collections.
Every time a domain object is created, the program invokes the debugger which places the new
domain object into its domain collection. The debugger uses the domain collection in query
evaluations to iterate through all domain objects. To facilitate incremental query reevaluation
(section 4.3.5.1), the debugger partitions domain collections into changed and unchanged parts
after each monitored event. To maintain query correctness and to facilitate garbage collection,
the debugger allows the garbage collector [103][173][192] to delete dead objects from domain
collections. This behavior is implemented by referring to the objects in domain collections
through weak pointers. As a result, the debugger’s references to the domain objects are ignored
by the garbage collector, and the garbage collector behaves as if no debugger was present. After
program-unreachable objects are garbage collected, the debugger discards null weak references
that previously pointed to the collected objects.

The debugger does not use weak references in the intermediate result collections. Although it

would be easy to use weak references in the intermediate result collections, it is an unnecessary
overhead. These collections are discarded and recomputed every time the query is reevaluated,
so they themselves are garbage collected. Since the query reevaluation frequency is usually
greater than the garbage collection frequency, the current implementation works fine.

For queries that have non-empty results (section 4.6), the debugger should update these results
when domain objects are garbage collected. However, to support the result update on GC, i.e.,
to remove the tuples containing garbage collected objects and to inform the user about the
changes in the result, the debugger has to be aware of the garbage collection. This can be

51

achieved by changing the JVM garbage collector, by using weak reference queues, or by using
finalizable weak references. We have not implemented this functionality.

Using weak references adds an additional overhead to the query domain maintenance, so for
small programs users can use a system that references objects directly and does not allow
garbage collection of domain obje]cts

To confirm that the query results do not contain otherwise dead objects, the system could
perform full garbage collection and reevaluate the query again. Such option would be expensive
but worthwhile for users who want to be certain about the validity of the query results. This
option is not implemented in the current system.

4.3.5 Overview of Query Execution

This section describes query evaluation after an instrumented event in the debugged program.
Whenever the program invokes the debugger, it passes the object involved in the event. If the
event is a field assignment, the program also passes the new value to be assigned to the field.
Figure 20 shows the control flow of the query execution. First, the debugger checks whether the
changed object is a domain object. Consider a query thatdiottgects with a negative type

code:

Idx. xtype<O0

Here,ld is a subclass of thexpression class, and thgpe field is defined irExpression. Thus, the
program may invoke the debugger when tpe field inherited from thexpression class is
assigned in an object of anothepression subclass. For example, the program invokes the
debugger after assigning thge field in anArithmeticExpression object. This object shares the

type field with the domain class objects, but it does not belong to the query domain, so the
debugger immediately returns to the execution of the user program without reevaluating the

query.

Instrumente Domain Same value Query Result
event test assignment test~ |reevaluation update

Figure 20. Control flow of query execution

If the object passes the domain test, the debugger checks whether the value being assigned to
the object field is equal to the value previously held by the field. For example, some molecules
do not move in the ideal gas simulation, yet their coordinates are updated at each simulation
step. Such assignments do not change the result of the query and can be ignored by the
debugger. The debugger does not perform this test if the invoking event is an object creation.

1 The experiments in this chapter were performed on such system. See section 4.4.

52

This test is just one example of tests that quickly verify whether a query result has changed due
to the assignment. Assignments that do not change the query result areinvalieht
assignments. If the system can infer that an assignment is invariant, it can skip evaluating the
guery. Another set of assignments that could be used to optimize the systeiwnatenic
assignments. Such assignments either increase the query answer set or decrease it but do not
both add and remove some elements to the answer set. Not counting the equality test, other
invariant and monotonic assignments depend on the query semantics. For example, if a query
has an inequality constrainy <0, a decrease of fieldvould be monotonic because it could not
decrease the size of the answer set. Future implementations of the debugger could exploit
invariant and monotonic events.

After these two tests, the debugger starts reevaluating the query. The non-incremental query
evaluation algorithm is described in section 3.3.3. The dynamic query-based debugger uses
incremental reevaluation to improve the efficiency of the previous algorithm.

4.3.5.1 Incremental Reevaluation

When a program invokes the debugger, it passes the changed object to the debugger. From the
properties of our change sets, we know that this object is the only one that changed since the last
guery evaluation. Consequently, a full reevaluation of the query for all domain objects is
unnecessary. We use incremental reevaluation techniques developed for updates of materialized
views in databases [26][34] to speed up the query execution. Consider a query, a join of three
domainsa*B*C, e.g.,

Aa;Bb;Cc. ax==by&&bz<cw

The “*” symbol denotes a Cartesian product with some selection constraint; the “+" symbol
below denotes a set union. If an object of domsashanges, the new result of the query is

A*(B+AB)*C=(A*B*C)+(A*AB*C)

The transformation of the result into the formula on the right hand side is correct because the
Cartesian product and union operations are distributive. The first part of the result is the result
of the previous query evaluation. The debugger stores this result—usually empty for assertion
gueries—and does not need to reevaluate it. The second part of the result contains only the
changed object\g) of the domaim combined with objects of the other domains. The debugger
evaluates the changed part in the same way as it would evaluate the whole query. Figure 21
shows an incremental evaluation of changes in the query result. The execution starts with the
changed objeaiB passed from the user program. Because this is the only object for which the
debugger evaluates the first constraint, the intermediate result is likely to be empty. In general,
the size of intermediate results is much smaller in the incremental evaluation, speeding up the
guery evaluation. If intermediate results are not empty, the debugger continues the evaluation in
the usual manner and produces the incremental (gsulB * C). The system then merges the
result with the previous result to form the complete query result.

53

Instrumented | _F~ - - ed objectB | Collection ¢ * AB) |—#{Collection & *AB*C)

assignment
Collection A / Collection C +

Collection & *B * C)

Figure 21. Incremental query evaluation

The query evaluation is further optimized by finding efficient join orders and by using hash
joins as described in section 3.3. Because sizes of domains change during program runtime and
we cannot efficiently determine the selectivities of constraints, we use a simple heuristic for join
ordering: execute selections first, equality joins next, and inequality constraints last.

4.3.5.2 Custom Code Generation for Selection Queries

Constraints of selection queries are usually very simple and can be evaluated very fast. Instead
of performing the general query execution algorithm described in section 4.3.5.1, which goes
through numerous general steps and calls a number of methods, the debugger can evaluate just
the few tests necessary to check the selection constraints. Because these tests depend on the
guery asked, the code for their evaluation has to be generated at program load time. During the
loading of the user program, the debugger generates a Java classewithraethod. We show

such a method in Figure 22 for the query

Moleculel m. m.x > 350
The first three statements of the method contain the code common for both unoptimized and

optimized versions. This code performs the domain test and the same value assignment test
described in section 4.3.5. The optimized code that follows evaluates the selection constraint on

public final class DebuggingCode implements RunTimeCode {
public static void debug (Molecule updatedObject, int newValue) {
// Code common for both general and optimized versions
if (! (updatedObject instanceof Moleculel))
{ updatedObject.x = newValue; return; }
if (updatedObject.x == newValue) return;
updatedObject.x = newValue;
// Instead of calling general query evaluation method,
// evaluate constraint here
if (updatedObject.x > 350)
QueryTool.outputResult(updatedObject);

Figure 22. Selection evaluation using custom code

54

the changed object and calls the debugger runtime only if the query has a non-empty result. The
debugger uses thebug method as an entry point that the user program calls when it reaches
instrumentation points. With custom code generatediethg method contains all code needed

to evaluate a selection, so the reevaluation costs only one static method call. Furthermore, the
debug method—a member offiaal class—may even be inlined into the instrumentation points

by a JIT compiler. We could also inline the bytecodes into the instrumented method.

4.3.6 Related Work

Debugger implementations use a variety of techniques to gather information about objects and
to instrument program code. This section discusses runtime information gathering methods in
more detail.

4.3.6.1 Runtime Information Gathering Techniques

Debuggers providing data about runtime events use different techniques to detect these events.
The implementation of event monitoring can be divided into three categories by the source of
event information:

* Program itself. The program is instrumented to provide data about runtime events. Either
program text [50][51][116][129], its bytecode form, or the executable [109] can be
instrumented.

* Runtime system. The runtime system provides the information about events either by itself
or through its modification.

» Operating system debugging interface. The operating system or its debugger is used to
gather the information.

Most program debugging and visualization systems such as HotWire [116] and Ovation
[50][51] instrument the program text to generate events of interest during the execution. Lange
and Nakamura [117][118][119][120] investigated program instrumentation, reflection
(metaclass) protocol, and the HeapView Debugger to track objects in the heap. These three
methods belong to the three different categories outlined above. According to these authors,
source code instrumentation offered the fastest trace generation, but required source code
modification and program recompilation.

Consens et al. [44][45] use the Hyisualization system to find errors using post-mortem event
traces. De Pauw et al. [52] and Walker et al. [182] use program event traces to visualize program
execution patterns and event-based object relationships, such as method invocations and object
creation. All these systems use program instrumentation to obtain the event traces, although
Kimelman et. al. [111] also use information provided by the underlying operating system.

55

Laffra [113] discussed Java source code instrumentation by using a preprocessor or by
modifying thejavac compiler. We have opted for class file bytecode instrumentation at load
time.

None of the debugging projects modify compilers to add visualization code. In contrast to the
class loader modification, changing a compiler is considered a major effort outside of the scope
of debugger implementations. Although using compilers to add debugging code would be
roughly equivalent to the preprocessor based code instrumentation, the compiler could be more
efficient in added code or more powerful by accessing objects and their state, which is difficult
to access from the preprocessor directives. Compilers do implement assertions—an event
gathering technology supported in programming languages such as Eifel [134]. However,
adding assertions to languages like Java necessitates implementation schemes similar to these
of other debugging constructs [56][105] and is rarely done by compiler modification. Both
Handshake [56] anpContractor [105] use load-time class file instrumentation to implement
Java assertions. The BCA tool [107] changes a small part @givéhecompiler to incorporate

class file loading through the BCA subsystem.

The bytecode instrumentation used in the dynamic query-based debugger is similar to the
technique proposed by Kessler [109] to implement fast breakpoints. However, Kessler had to
deal with a more difficult problem of instrumenting executable code. In executable code, the
system would not be able to replace a short instruction with a long one, or to insert additional
instructions, because control flow addresses cannot be adjusted as easily in the executable code
as they can be in the bytecode. Executable code instrumentation was used in such areas as
software-based fault isolation [181].

To avoid source code madification, some debugging systems use runtime system information
for event monitoring. Laffra’s [113] LTK Visual Java Debugger uses a patched JVM to receive
the method call and exit information. Similarly Hotwire’s implementation for Smalltalk uses a
patched version of GNU Smalltalk [113]. Lange and Nakamura [117][118][119][120] use
reflection capabilities of the IBM SOM to get debugging information. In Java, the reflection
package and debugger API provide hooks into the Java VM which are unfortunately insufficient
for object-oriented visualizations or query-based debugging. The Jagadl™ Platform
Debugger Architecturf98] gives debugger writers access to more information. Unfortunately,
the current version of Jal4 Platform Debugger Architecture does not yet allow debuggers to
retrieve a collection of all objects of a class, nor does it provide code instrumentation facilities.

Yet another way of accessing debugging information is to use available operating system
debugging interfaces. In most cases, such an approach has a high cost because the debugger
runs in a separate address space and incurs expensive context switches. In spite of this
drawback, Lange and Nakamura chose to use the debugger interface in the final version of their
system because they deemed source code instrumentation impractical for real world
applications.

56

Classification of the event-gathering debugger implementations is very similar to that of the
data breakpoint implementations [108][179][180]. If processors provide support for write
monitors, data breakpoints can use this facility. This approach, though available in modern
processors, has very limited functionality; for example, only ten locations can be monitored
using Intel x86 breakpoint registers. Data breakpoints can also be implemented by placing
objects in write-protected virtual memory pages and transferring control to the debugger upon
a page trap or by using other write-barrier techniques [87][109]. To implement the query-based
debugger using the above two approaches, one would have to modify the Java Virtual Machine,
an approach that we avoided for portability reasons.

Since the query-based debugger uses Java bytecode instrumentation, the next section explores
alternative load-time instrumentation techniques that can be used to instrument Java programs.

4.3.6.2 Load-Time Code Instrumentation

Our system uses load-time code modification to insert debugger invocations in the debugged
program. The instrumentation is done by providing a custom class loader. Other load-time
instrumentation alternatives were comprehensively explored by Duncan and Hoélzle in [57].
Here the available techniques, their advantages and disadvantages are briefly recapped. (Figures
courtesy of Duncan and Hoélzle.)

The main goal of load-time adaptation (LTA) is to intercept a file request fronostigrogram

and to use #ool program to adapt the file before providing it to the host program. In the case
of debugging event gathering, the host program is the Virtual Machine, while the tool is the
class file instrumentor. Here we present different load-time adaptation techniques for JVM-
instrumentor combination:

Virtual Machine

/ -~
D Loader y \ Linker Init |—» etc.
IR S
~
class N
file ™~ -
LTA Runtime Modify VM’s data path here

Figure 23. Modifying a VM to implement LTA.

« Modifying the host (VM) (Figure 23T his approach has been used in numerous projects
both in Java world [7][106][138] and beyond it [86]. Since this technique modifies the host,
it has limited portability, both because the implementation cannot be reused for other hosts,

57

System classes Virtual Machine
—
D System Loader
1 delegation |—» etc.
[:
[N Custom Loader
o L3N class LTALoader
. T~ - ____ _ _ extends java.lang.ClassLoader
User-defined {...LTA code ... }
classes

Figure 24. Performing LTA with a custom class loader.

and because it has to be provided for all hosts of the supported class, i.e., all VMs. The tool
implementers may not have an access to the host source code and so may not be able to
support such a host. The advantage of this approach is that the file adaptation is done inside
a host that “understands” the file and has additional host-specific information (e.g., global
data-flow), so it can do sophisticated transformations that may not be possible outside the
host.

» Custom class loaders (Figure 24)he approach of using custom class loaders to load class
files is confined only to the Java Virtual Machines and the class files loaded through the
loaders [125]. Although custom class loaders are powerful because they intercept classes
loaded both from the files and through the network, they have several limitations. First, the
system classes are not accessible to the custom class loaders because they are loaded
directly by the JVM system class loader. Second, the interaction of multiple user-defined
class loaders is confusing. The advantage of custom class loaders is that they use a hook
provided by the Java Virtual Machine definition [127], so tool programming is relatively
easy and can be done in Java. We have used this approach in our prototype implementation.
This approach was also used in other systems [43][187].

* Intercepting system calls (Figure 23) is possible for the tool to intercept the operating
system calls with which libraries request files. This method does not depend on the host
program and on the type of files accessed. A drawback of this approach is that it is operating
system specific. Although Solaris providesrec interface for the system call interception,
other operating systems may not have such convenient hooks [13]. Neither this method nor
the following library call interception method can determine the program requesting a file,
so they cannot adjust the adaptation behavior to different hosts. The UFO global file system
uses this approach for handling file requests [13].

58

T .

VM

~ = =

VM

Standard
Library |

Intercept system call here’

oS

LTA Runtime

Figure 25. Implementing LTA by intercepting system calls.

fopen()

* Intercepting library calls (Figure 26)This approach intercepts file open requests from the
host to the standard libraries. It shares most advantages and disadvantages with the previous
approach. Though it is operating system independent, it is standard library dependent and
can easily be applied only when libraries are dynamically linked. The Proteus system uses
this approach to add assertions to the Java language [57]. The Xab PVM program
monitoring system [22] also uses library replacement for PVM call interception.

Further investigation of load-time adaptation is beyond the scope of this work. Any of its
variations can be applied to the dynamic query-based debugger implementation.

Figure 26. Implementing LTA using dynamic linking.

LTA
Library

_open()

Standard
Library

open()

(O]

4.3.7 Dynamic Query Debugger Implementations for Other Languages

To be practical for a wide range of debugging tasks, the dynamic query-based debugger should
be applicable and implementable for various programming languages. It is clear that the
concept of debugging with queries can be used in all object-oriented and object-based
languages. Similar principles (although with different implementation concerns) can be used in
programming languages with structures or records (procedural languages such as C and Pascal
and functional programming languages such as Haskell, Lisp, and ML). How difficult would it

be to port the debugger into environments of these languages?

59

The following key issues influence the difficulty of porting:

* Instrumentationinstrumentation can be done at a source level or at the intermediate format
level. The Java bytecode format is well suited for instrumentation. Other intermediate
formats such as Smalltalk bytecodes may provide similar ease of instrumentation.
Instrumenting source code is more complicated, because this code needs to be parsed and
transformed into some temporary format before instrumentation. Instrumenting or handling
compiled code is probably prohibitive unless some VM based code standard emerges [4].
In languages allowing unrestricted use of pointers such as C and C++, handling of field
assignments through instrumentation may prove difficult if not impractical. For such
languages, one would need to use alternative approaches, such as placing objects into the
read-only memory and invoking the debugger on write traps.

« Domain object gatheringThis would be easy in languages like Smalltalk that provide a
standard way of retrieving all objects of a class. On the other hand, tracking all objects of
the same type in languages such as Pascal may require significant modification of the
compiler and the runtime system.

* Runtime code generation and evaluatidio evaluate query expressions, the debugger
needs to generate and evaluate code during program runtime. Smalltalk and Self support
dynamic code generation. For other languages such as C and Pascal, dynamic code
generation would be problematic. Although the execution of C statements during runtime
is present in thgdb debugger, it is not simple to implement.

From our experience, porting the debugger to pure object-oriented languages (e.g. Smalltalk)
would be possible without a lot of changes. Support of procedural languages such as C, C++,
and Pascal would be more difficult.

4.4 Experimental Results

Ideally, a test of the efficiency of a dynamic query-based debugger would use real debugging
queries asked by programmers using the tool for their daily work. Although we tried to predict
what queries programmers will use, each debugging situation is unique and requires different
gueries. To perform a realistic test of the query-based debugger without writing hundreds of
possible queries, we selected a number of queries that in complexity and overhead cover the
range of queries asked in debugging situations. The selected queries contain selection queries
with low and high cost constraints. The test also includes hash-join and nested-join queries with
different domain sizes. The queries check programs that range from small applets to large
applications and (for stress-tests) microbenchmarks. These applications invoke the debugger
with frequencies ranging from low to very high, where a query has to be evaluated at every
iteration of a tight loop. Consequently, the experimental results obtained for the test set should
indicate the range of performance to be expected in real debugging situations.

60

c

% Invocation
Query 'g frequency

o (events /s)

n

1. Moleculel z. z.x> 350 1.02 15,000

2.1dx. xtype<O 1.11 16,000

3. spec.benchmarks. 202 _jess.jess.Token z. z.sortcode == -1 1.25 169,000

4. spec.benchmarks. 201 _compress.Output_Bufferz. z.OutCnt< 0 1.18

5. spec.benchmarks. 201 compress.Output_Buffer z. z.count() <0 1.27

6. spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 1.37 | 1.900.000

7. spec.benchmarks. 201 _compress.Output_Buffer z. 583

z.complexMathOutCnt(0) '

8. spec.benchmarks. 201 _compress.Compressor z. z.in_count<0 1.18 933,000

9. spec.benchmarks. 201 _compress.Compressor z. z.out_count<0 1.10

10. spec.benchmarks._201_compress.Compressor z. L83 196,000

z.complexMathOutCount(0) '

11. spec.benchmarks._205_raytrace.Pointp. p.x == 1.23 787,000

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.98 2,300,000

13. Moleculel z; Molecule2 z1.
zx==2z1x&& z.y == z1.y && z.dir == z1.dir 213 54,000
&& z.radius == z1l.radius (33x33 hash join)

14. Lexer |; Token t. l.token ==t && t.type == 27
(120,000x600 hash join) 343 25,000

15. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks. 205 raytrace.IntersectPt ip. 229 350,000
p.z==ip.t&&p.z<0 (85,000x8,000 hash join)

16. spec.benchmarks. 201 compress.Input_Buffer z;
spec.benchmarks. 201 _compress.Output_Buffer z1. 157 1500.000
z1.0utCnt == z.InCnt && z1.0utCnt < 100 && z.InCnt > 0 B
(1x1 hash join)

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1. 77 2 600.000
z1.0utCnt < 100 && z.out_count > 1 && z1.0utCnt/ 10 > z.out_count R
(1x1 join)

18. Test5z. zx<0 6.4 42,000,000

19. TestHash5 th; TestHashl thl. th.i==thl.i (1x20 hash join) 228

40,000,000

20. TestHash5 th; TestHash1 thl. th.i<thl.i (1x20 join) 930

Table 5. Benchmark queries

61

For our tests we used an otherwise idle Sun Ultra 2/2300 machine (with two 300 MHz
UltraSPARC Il processors and 384 MB physical memory) running Solaris 2.6 and Solaris Java
1.2 with JIT compiler golaris VM (build Solaris_JDK_1.2_01, native threads, sunwjit)) [99] with a

128 MB heap. Execution times are elapsed times and were measured with millisecond accuracy
using the system.currentTimeMillis() method. All executions used only main memory and
contained no paging disk I/0O. (Full experimental results are reported in Appendix B.)

4.4.1 Benchmark Queries

To test the dynamic query-based debugger, we selected a number of structurally different
gueries (Table 5) for a number of different programs (Table 6):

» Queries 1 and 13 check a small ideal gas tank simulation applet that spends most of the time
calculating molecule positions and assigns object fields very infrequently. It has 100
molecules divided amongioleculel, Molecule2 and Molecule3 classes. The application
performs 8,000 simulation steps.

* Queries 2 and 14 check thecaf Java subset compiler, a medium size program developed
for a compiler course at UCSB. Tiekxen domain contains up to 120,000 objects.

* Query 3 checks theess expert system, program from the SPECjvm98 suite [158].

e Queries 4-10, and 16-17 check thepress program from the SPECjvm98 suite. Our
gueries reference frequently updated fieldsooipress.

* Queries 11-12 and 15 check the ray tracing program from the SPECjvm98 suieiniThe
domain contains up to 85,000 objects; lthesectPt domain has up to 8,000 objects.

e Queries 18-20 check artificial microbenchmarks. These microbenchmarks stress test
debugger performance by executing tight loops that continuously update object fields.

Application Size (Kbytes) Execution time ()
1. Compress 17.4 50
2. Jess 387.2 22
3. Ray tracer 55.7 17
4. Decaf 55 15
5. Ideal gas tank 143 57

Table 6. Application sizes and execution times
Structurally, queries can be divided into the following classes:

e Queries 1-12 and 18 are simple one-constraint selection queries with a wide range of
constraint complexities. For example, query 4 has a very simple low-cost constraint that

62

compares an object field to an integer. The more costly constraint in query 5 invokes a
method to retrieve an object field. Another costly alternative constraint (query 6) invokes a
comparison method that takes a value as a parameter. Finally, the most costly constraint in
query 7 performs expensive mathematical operations before performing a comparison.
Queries 8 and 9 have very similar constraints, but differ 4.8 times in debugger invocation
frequency. In this paper, by “debugger invocation frequency” we mean the frequency of
events in the original program that would trigger a debugger invocation, i.e., the invocation
frequency for a debugger with no overhead. Query 12 compares the parameter of the
method to the distance of a point to the origin. This query combines costly mathematical
operations with increased debugger invocation frequency, because its result depends on all
three coordinates @bint objects.

* Queries 13-17 and 19-20 are join queries. Queries 13-16 and 19 can be evaluated using
hash joins. The evaluation of queries 17 and 20 has to use nested-loop joins. For join
gueries, the slowdown depends both on the debugger invocation frequency and sizes of the
domains. Queries 13—-14 have low invocation frequencies; queries 15-17, 19-20 have high
invocation frequencies. Queries 14 and 15 have large domains.

In the next section, we discuss the performance of these queries. Section 4.4.3 then discusses
the efficiency benefits of incremental evaluation, custom selection code, and unnecessary
assignment detection.

4.4.2 Execution Time

Figure 27 shows the program execution slowdown for application programs when queries are
enabled. The slowdown is the ratio of the running time with the query active to the running time
without any queries. For example, the slowdown of query 3 indicates thatdlexpert system

ran 25% slower when the query was enabled.

Overall the results are encouraging. All selection queries except query 7 have overheads of less
than a factor of 2. The median slowdown is 1.24. We expect overheads of common practical
selection queries to be in the same range as our experimental queries; the performance model
discussed in section 4.5 supports this prediction.

Join queries have overheads ranging from 2.13 to 229 for applications. Hash queries (which can
be used for equality joins) are efficient for queries 13—14, and other joins are practical for query

13 in which the domains contain only 33 objects each. Queries 15-17 have large overheads
because of frequent invocations (e.g., 2.6 million times per second for query 16) and large

domains. Join query performance is acceptable if join domains are small, and the program
invokes the debugger infrequently. For large domains and frequently invoked queries, the

overhead is significant.

Microbenchmark stress-test queries 18-20 show the limits of the dynamic query-based
debugger. The benchmark updates a single field in a loop 40 million times per second. When
gueries depend on this field, the program slowdown is significant. Selection query 18 has a

63

5.83

Slowdown

T T T T T T T T T 1
1 2 6 7 8 9 10 11 12 13 14
Query number
Figure 27. Program slowdown (queries 15—20 not shown)

The slowdown is the ratio of the running time with the query active to the running time without any queries. For
example, the slowdown of query 3 indicates that the Jess expert system ran 25% slower when the query was enabled.

—
3 4 5

slowdown factor of 6.4, the hash-join evaluation has a slowdown of 228 times, and the slower
nested-loop join that checks twenty object combinations in each evaluation has a slowdown of
930 times.

Although the microbenchmark results indicate that in the worst case the debugger can incur a
large slowdown, these programs represent a hypothetical case. Such frequent field updates are
possible only with a single assignment in a loop. Adding a few additional operations inside the
loop drops the field update frequency to 3 million times per second which is more in line with
the highest update frequencies in real programs. For such update frequencies, the slowdown is
much lower as indicated by query 4. The likelihood of high update frequencies is discussed in
section 4.5.

There are several parts that contribute to the query overhead:

100
90
80
70
60
50

[] Evaluation

[l First evaluation
0 GC

Il Loading

40 |
30
20
10

0

Overhead percentage

123456 7 8 91011121314151617 181920
Query number

Figure 28. Breakdown of query overhead as a percentage of total overhead

For example, 3% of query 14 overhead is spent on instrumentation, 34% on garbage collection, 3% in the
first evaluation, and 60% in subsequent reevaluations.

64

» Loading timethe difference between the time it takes to load and instrument classes using
a custom class loader, and the time it takes to load a program during normal execution.

» Garbage collection timehe difference between the time spent for garbage collection in the
gueried program and the GC time in the original program.

 First evaluation timethe time it takes to evaluate the query for the first time. For join
gueries, the first query is the most expensive, because it sets up data structures needed for
future query reevaluations. We separate this time from the rest of the query evaluation time,
because it is a fixed overhead incurred only once.

» Evaluation timethe time spent evaluating the query. This component does not include the
first evaluation time. The first evaluation time and the evaluation time together compose the
total evaluation time

Figure 28 shows the components of the overhead. For example, 3% of the overhead of query 14
is spent on instrumentation, and 34% on garbage collection. The total evaluation time is 63% of
the overhead, with 3% spent in the first evaluation, and 60% spent in subsequent reevaluations.
On average, the largest part of the overhead is the evaluation time (75.5%), while loading takes
only 17% and garbage collection has a negligible overhead (less than 7%) in mdsflteses
loading overhead becomes a significant factor when the loaded class hierarchy is large, as in
guery 3 on theess system. The loading overhead also takes a larger proportion of time when
qguery reevaluations are infrequent or fast as in queries 1, 2, 9, and 11. Garbage collection was
not a significant factor except in query 14 which creates 120,000 token objects, and in query 1
which has such a small absolute overhead that even a slight increase in GC and loading time
becomes a large part of the overhead.

The experiments were executed with a version of the debugger that does not use weak
references for domain collections. Using the system with weak references does not change
results for selection queries, because the debugger does not track the domain collections for
selection queries. Query 17 runs 40% slower because no domain objects are garbage collected,
and the weak references only add needless overhead. Users can choose to use the system
without weak references if they expect such program behavior. Query 15 executed faster with
factor 49 overhead vs. factor 229 overhead. For this query, the domain objects become garbage
and are garbage collected. So, in this case, the system with weak references provides a faster
and more correct query evaluation.

The evaluation component dominates the overhead, especially in high-overhead, long-running
gueries, so evaluation optimizations are very important for good performance. We discuss some
optimizations already reflected in this graph in the next section. Loading overhead can be
further reduced by using efficient class file representations during instrumentation. Since the

1 Experiments were run with 128M heap, a factor that decreased the GC overhead.

65

Slowdown | Slowdown
Query versus non- versus
instrumented| optimized

1. Moleculel z. z.x> 350 1.19 1.16

2.1dx. xtype<O 613 554

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode ==-1 | 7135 5,725

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < @75 402

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < @74 373

6. spec.benchmarks._201_compress.Output_Buffer z. 587 428
Z.lessOutCnt(0)

7. spec.benchmarks._201_compress.Output_Buffer z. 513 88
z.complexMathOutCnt(0)

8. spec.benchmarks. 201 compress.Compressor z. z.in_count < @75 233

9. spec.benchmarks. 201 _compress.Compressor z. z.out_count < @7 33.8

10. spec.benchmarks. 201 compress.Compressor z. 40 218
z.complexMathOutCount(0) '

11. spec.benchmarks. 205 raytrace.Pointp. p.x== 10,500 8,496

12. spec.benchmarks. 205 raytrace.Point p. p.farther(100000000),800 8,972

13. Moleculel z; Molecule2 z1.
zX==21X && z.y == z1.y && z.dir == z1.dir && 21.96 10.3
z.radius == zl.radius (33x33 hash join)

14. Lexer |; Tokent. l.token ==t && t.type == 27
(120,000x600 hash join) 1,973 576

15. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip. 12,400 54
p.z==ip.t&&p.z<0 (85,000x8,000 hash join)

16. spec.benchmarks. 201 compress.Input_Buffer z;
spec.benchmarks. 201 compress.Output_Buffer z1. 1708 11
z1.0utCnt == z.InCnt && z1.0utCnt < 100 && z.InCnt > 0 '

(1x1 hash join)

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1. 697 9
z1.0utCnt < 100 && z.out_count > 1 &&
z1.0utCnt/ 10 > z.out_count (1x1 join)

18. Test5z. zx<0 5,213 821

19. TestHash5 th; TestHashl thl. th.i==thl.i (1x20 hash join) 1,491 6.6

20. TestHash5 th; TestHash1 thl. th.i<thl.i (1x20 join) 5,602 6.02

Table 7. Overhead of non-incremental evaluation

66

loading overhead is insignificant in most cases, we did not pursue the class file handling
optimizations.

4.4.3 Optimizations

To evaluate the benefit of optimizations implemented in the dynamic query-based debugger, we
performed a number of experiments by turning off selected optimizations.

4.4.3.1 Incremental Reevaluation

The dynamic query debugger benefits considerably from the incremental evaluation of queries.
We disabled incremental query evaluation and reran all queries. Table 7 shows the results of this
experiment. The first column of numbers in the table shows the ratio of hon-incremental query
running time to the running time of the original program. The second column shows the ratio of
non-incremental query running time to the running time of fully optimized incremental query
evaluation. For example, query 2 had a factor of 613 overhead and ran for 2.5 hours. In contrast,
the same query ran 554 times faster using the incremental reevaluation, had only 11% overhead,
and finished in 16.4 seconds. Query 1 was the only query that the non-incremental debugger
could evaluate in a reasonable time. The overheads of all other queries were enormous; some
programs would have run for more than a day. (For queries 3-12 and 14-17, we stopped query
reevaluation after the first 100,000 evaluations and estimated the total overhead.) Despite the
large overall overhead, the individual non-incremental query evaluations are reasonably fast.
For example, even for large join queries 14 and 15, a single query evaluation only took about 50
ms.

The join queries orompress have an overhead of only 9-11 compared to the incremental
optimized version. These joins did not benefit much from incremental evaluation and its
optimizations because the domains of these joins contain only a single object.

Overall, the experiments with non-incremental evaluation of queries show that incremental
evaluation is imperative, greatly reducing the overhead, and making a much larger class of
dynamic queries practical for debugging.

4.4.3.2 Custom Generated Selection Code

To estimate the benefit of generating custom code, as discussed in section 4.3.5.2, we ran all
selection queries with the optimization disabled. The results of the experiment are shown in
Table 8. The first column of numbers shows the slowdown of the unoptimized version
compared to the original program. The second column indicates the slowdown of the
unoptimized version compared to the optimized version. For example, query 4 ran 68.5 times
slower than the original program and 58 times slower than the optimized query.

The ideal gas tank applet abdcaf compiler queries did not benefit from this optimization,
because these programs reevaluate the query infrequently, and the optimization benefit is
masked by variations in the start-up overhead. All other queries show significant speedups with

67

Slowdown | Slowdown
Query _versus non- versus
instrumented| optimized

1. Moleculel z. z.x > 350 1.05 1.03

2.ldx. x.type<0 1.46 1.34

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 11.70 9.26

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt|< 0 68.5 58

5. spec.benchmarks._201_compress.Output_Buffer z. z.count()|< 0 64 51

6. spec.benchmarks. 201 _compress.Output_Buffer z. 65 47
z.lessOutCnt(0)

7. spec.benchmarks. 201 _compress.Output_Buffer z. 69.6 12
z.complexMathOutCnt(0)

8. spec.benchmarks. 201 _compress.Compressor z. z.in_count< 0 43.6 37

9. spec.benchmarks._ 201 _compress.Compressor z. z.out_count < 010.5 9.6

10. spec.benchmarks._201_compress.Compressor z. 11 6
z.complexMathOutCount(0)

11. spec.benchmarks._205_raytrace.Pointp. p.x== 21 15

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 61 31

13. Test5z. z.x<0 1,952 307

Table 8. Benefit of custom selection code (selection queries only)

the optimization enabled. The benefit of the optimization increases with the frequency of
debugger invocations; overall, custom generated selection code produces a median speedup of
15.

4.4.3.3 Same Value Assignment Test

Before evaluating a query after a field assignment, the debugger checks whether the value being
assigned to the obiject field is equal to the value previously held by the field. Such assignments
do not change the result of the query and can be ignored by the debugger.

Table 9 shows that the number of unnecessary assignments differs highly depending on the
programs and fields. While some programs and fields do not have them at all, others have from
7% to 95% of such assignments. Only the ideal gas tank simulatigsss¢lexpert system, and

the ray tracing application have unnecessary assignments to the queried fields.

To check the efficiency of the same-value test, we disabled it while leaving all other
optimizations enabled. The results show that the test does not make much of a difference in
guery evaluation for most queries. For selections that can be evaluated fast, the cost of the same-
value test is similar to the cost of the full selection evaluation. Only when the selection

68

Slowdown %
Query versus unnecessary,
optimized | assignments

1. Moleculel z. z.x> 350 0.99 95%
2. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 0.997 7%
3. spec.benchmarks. 205 raytrace.Pointp. p.x== 0.988 15%
4. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.16 40%
5. Moleculel z; Molecule2 z1.

zX==2z1x&& z.y == z1.y && z.dir == z1.dir && 1.61 54%
z.radius == z1.radius (33x33 hash join)

6. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks._205_raytrace.IntersectPt ip. 1.02 15%
p.z==ip.t && p.z<0 (85,000x8,000 hash join)

Table 9. Unnecessary assignment test optimization
(excluding queries with no unnecessary assignments)

constraint is costly (as in query 4), does the same-value test reduce the overhead. For joins, the
cost reduction is significant for the ideal gas tank query that contains 54% unnecessary
assignments. For other joins, the percentage of unnecessary assignments is too low to make a
difference.

To summarize, the test whether an assignment changes a value of a field costs only one extra
comparison per debugger invocation. It does not change the overhead for most programs, but
saves time when the number of unnecessary assignments is large or the query expression is
expensive.

4.5 Performance Model

To better predict debugger performance for a wide class of queries, we constructed a query
performance model. The slowdown depends on the frequency of debugger invocations and on
the individual query reevaluation time. This relationship can be expressed as follows:

T= Toriginal (1 + Tnochange * I:nochange + Tevaluate * I:evaluate)

This formula relates the total execution time of the program being debuggédhe execution
time of the original program4in Using frequencies of field assignments in the program and
individual reevaluation times. The model divides field assignments into two classes:

» Assignments that do not change the value of a field. These assignments do not change the
result of the query. The debugger has to perform only two comparisons in this case—a
domain test and the value equality test, so it spends a fixed amount of {img.t) in
such invocations independent of the query. We calcutgtggl,qe by running a query on a

69

program that repeatedly assigned the same value to the queried field; for the machine/JVM
combination we usedyochange = 66 NS.

« Assignments that lead to the reevaluation of a query. The time to reevaluate B guery
for such an assignment depends on the query structure and on the cost of the query
constraint expression. For each query, we calculaig,. by dividing the additional time
it takes to run a program with a query into the number of debugger invocations. This
calculation gives an exact result for programs that have no unnecessary assignments
(Frochange = 0). For example, for query 1, ate 1S 131NSTeyauate fOr query 4 is 140 ns,
which is close to the time to evaluate a similar query in a microbenchmark. When
constraints are more costly, .uae iNCreases; for example, for the highest cost selection
query (query 10) it is 4.26s. It is even higher for join queries where it depends on the size
of domains in joins; for example, for query 16 it isp&0 and for query 15 which has large
domains, it is 546is.

Using the values of reevaluation times and the frequency of assignments to the fields of the
change set, we can estimate the debugging overhead. First, we determine the typical field
assignment frequency.

4.5.1 Debugger Invocation Frequency

The debugger invocation frequency is an important factor in the slowdown of programs during
debugging. The program invokes the debugger after object creation and after field assignments.
For most queries, the field assignment component dominates the debugger invocation
frequency. To find the range of field assignment frequencies in programs, we examined the
microbenchmarks and the SPECjvm98 application suite. We instrumented the applications to
record every assignment to a field. Table 10 shows results of these measurements.

The maximum field assignment frequency in microbenchmarks is 40 million assignments per
second, but that would be difficult to reach in an application because the microbenchmarks
contain a single assignment inside a loop. Thepress program has the highest field
assignment frequency in the SPECjvm98 application suite, 1.9 million assignments per second.
Other SPEC applications, as well asiheaf compiler and the ideal gas tank applet, have much
lower maximum field assignment frequencies.

Figure 29 shows the frequency distribution of field assignments in the SPECjvm98
applications. The left graph indicates how many fields have an assignment frequency in the
range indicated on the x axis. For example, only four fields are assigned between one million
and two million times per second. The right graph shows the cumulative percentage of fields
that have assignment frequencies lower than indicated on the x axis; 95% of all fields have
fewer than 100,000 assignments per second.

To predict the overhead of a typical selection query, we can now calculate the overhead as a
function of invocation frequency. Figure 30 uses the minimum (130 ns) and maximumg¥.26
values ofT,, e from Table 10 to plot the estimated selection query overhead for a range of

70

250

200 |

150+

Number of fields
=
o
2

a1
o
1

Cumulative percentage of fields

100+

90
80
70
60
50
40
30
20
10

—r T T T 1
X X

o O
- 0

1
X X = =
g3«
—

Field assignment frequency

T T T T T T T T T T T T T T T 1
X X = =
o O

88 — N
— 0

Field assignment frequency

Figure 29. Field assignment frequency in SPECjvm98

invocation frequencies. For example, a selection query on a field updated 500,000 times per
second would have an overhead of 6.5% if its reevaluation time was 130 ns. If the reevaluation
time was 4.26s, the overhead will be a factor of 3.13. The graph reveals that selection queries
on fields assigned less than 100,000 times a second—95% of fields—have a predicted overhead
of less than 43% even for the most costly selection constraint. For less costly selections, the
guery overhead is acceptable for all fields.

10

—.

——

Low cost

High cost

Slowdown

The graph shows the predicted overhead

o o
—

o o
n o (=}
- o
-

Field assignment frequency

Figure 30. Predicted slowdown
as a function of update frequency. For example, the predicted overhead of a low-cost

selection query on a field updated 500,000 times per second is 6.5%; the predicted overhead of a high-cost query with the

same frequency is a factor of 3.13.

The worst case frequency scenario for a selection query evaluation would occur if a query
referenced all fields of an application. This would imply that the application has only one
class—an uncommon case. In this case, the query would be evaluated every time every field is
assigned. The frequency of such evaluations is given in Table 11. Except @ifhess
program, the total field assignment frequencies are within the range of individual field

71

Fevaluate T,
Query (assignments e\(/ﬁlg)a te
per second)

1. Moleculel z. z.x > 350 N/A N/A

2.ldx. xtype<O 16,000 3.73

3. spec.benchmarks. 202 _jess.jess.Token z. z.sortcode == -1 169,000 3

4. spec.benchmarks. 201 _compress.Output_Bufferz. z.OutCnt< 0 0.140

5. spec.benchmarks. 201 _compress.Output_Buffer z. z.count()|< 0 0.208

6. spec.benchmarks. 201 _compress.Output_Buffer z. 1,900,000 0.286
z.lessOutCnt(0) '

7. spec.benchmarks. 201 _compress.Output_Buffer z. 37
z.complexMathOutCnt(0) '

8. spec.benchmarks. 201 _compress.Compressor z. z.in_count|< 0 933,000 0.193

9. spec.benchmarks. 201 _compress.Compressor z. z.out_count<0 0.488

10. spec.benchmarks. 201 compress.Compressor z. 196,000 4.26
z.complexMathOutCount(0) '

11. spec.benchmarks._205_raytrace.Pointp. p.x == 787,000 0.486

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000)2,300,000 0.461

13. Moleculel z; Molecule2 z1.
zx==21x && z.y == z1.y && z.dir == z1.dir && N/A N/A
z.radius == z1.radius (33x33 hash join)

14. Lexer |; Tokent. l.token ==t && t.type == 27
(120,000x600 hash join) 25,0001 56.8

15. spec.benchmarks. 205 raytrace.Point p;
spec.benchmarks._ 205 raytrace.IntersectPt ip. 350,000 546
p.z==ip.t&& p.z<0 (85,000x8,000 hash join)

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks. 201 compress.Output_Buffer z1. 1500000 60
z1.0utCnt == z.InCnt && z1.0utCnt < 100 && z.InCnt > 0 B
(1x1 hash join)

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks. 201 compress.Output_Buffer z1.
21.0utCnt < 100 && z.out_count > 1 && 2,600,000 51
z1.0utCnt/ 10 > z.out_count (1x1 join)

18. Testbz. zx<0 42,000,000 0.131

19. TestHashb5 th; TestHash1 thl. th.i==th1l.i (1x20 hash join) 5.7

: _ _ 40,000,000
20. TestHash5 th; TestHash1 thl. th.i<thl.i (1x20 join) 23

Table 10. Frequencies and individual evaluation times

72

assignment frequencies (lower than 2.6 million assignments per second). Consequently, we can
argue that the overhead of most selection queries would be acceptable for debugging.

Maximum single field | Total field assignment
Application assignment frequency ~ frequency Original program
(field assignments per| (field assignments | execution time (s)
second) per second)

1. Compress 1,900,000 7,800,000 50.4

2. Jess 169,000 1,100,000 22.45

3.Db 254 897 75

4. Javac 217,000 2,600,000 38

5. Mpegaudio 495,000 2,600,000 57.4

6. Jack 27,000 214,000 27

7. Ray tracer 787,000 2,200,000 17

8. Decaf 56,000 528,000 15

9. Ideal gas tank 23,150 70,000 57

10. Microbenchmark 40,000,000 40,000,000 2.4

Table 11. Maximum field assignment frequencies

In the current model, the evaluation time, ... models all sources of query overhead. This
time includes the actual reevaluation time as well as the additional garbage collection time, the
class instrumentation cost, and the first evaluation cost. It would be more exact to model each
of these overheads separately. However, for long running programs the evaluation time
dominates the total cost, so the valueg.gf .. are likely to fall in the range we have covered.

In summary, the performance model predicts that most selection queries will have less than
43% overhead. The model can be used as a framework for concrete overhead predictions and
future model refinements.

4.6 Queries with Changing Results

So far we have discussed using dynamic queries for debugging, where the program stops as
soon as the query returns a non-empty result. However, programmers can also use queries to
monitor program behavior. For example, in the ideal gas tank simulation, users may want to
monitor all molecule near-collisions with a query:

Molecule* m1 m2. m1l.closeTo(m2) && ml !=m2

Programmers may use this information to check the frequency of near-collisions, to find out if
near-collisions are handled in a special way by the program, or to check the correspondence of
program objects with the visual display of the simulation. In this case, the debugger should not

73

stop after the result becomes non-empty, but instead should continue executing the program and
updating the query result as it changes. Such monitoring, perhaps coupled with visualization of
the changing result, can help users understand abstract object relationships in large programs
written by other people. How can a debugger support continuous updating of query results
while the program executes?

Query Slowdown

1. Moleculel z. z.x <200 1.05
2.1dx. x.type== 1.23

3. spec.benchmarks. 202 _jess.jess.Token z. z.sortcode == 13

4. spec.benchmarks._201_compress.Compressor z. z.OutCnt == 1.19

5. spec.benchmarks. 201 compress.Compressor z. z.out_count == 1.09

6. Moleculel z; Molecule2 z1. zx<zlx&&zy<zly (33x33join) 1.47

7. Lexer I; Tokent. ltoken ==t && t.type == (120,000x600 hash join) 4.09

8. spec.benchmarks. 205 raytrace.Point p;

spec.benchmarks. 205 raytrace.IntersectPt ip. 212.4
(p.z==ip.t) && (p.z > 100) (85,000x8,000 hash join)

9. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._ 201 compress.Output_Buffer z1. z1.0utCnt == z.out_jcount9.07
(1x1 hash join)

10. spec.benchmarks._201_compress.Input_Buffer z;

spec.benchmarks._201_compress.Output_Buffer z1. 127
z1.0utCnt< z.InCnt (1x1 join)
11. Test5z. zx%2== 45

Table 12. Benchmark queries with non-empty results

The dynamic query-based debugger described above needs only a few changes to support
monitoring queries. The basic scheme and the implementation of the dynamic query-based
debugger discussed in section 4.3 remain the same. The only new component of the debugger
is a module that maintains the current query result. As discussed in section 4.3.5.1, the
debugger reevaluates only the changed part of the query. Consequently, the result handling
module must store the query result from the previous evaluation and then merge it with the new
partial result. To achieve that, after query execution the debugger deletes all tuples from the
previous result that contain the changed domain object and inserts the new tuples generated by
the incremental reevaluation.

Experiments with queries similar to the ones in Table 5 show that adding the query result update
functionality does not significantly change the query evaluation overhead (Table 12). The only
exception is the microbenchmark selection query 11 which updates the query result during each

74

reevaluation. Consequently, the overhead of the selection increases from 6.4 times to 45 times,
although part of this increase can be attributed to the more costly selection constraint. However,
such frequent result updates are unlikely for most monitoring queries: programmers can only
absorb infrequent result changes, so, if results change rapidly, the display will be unintelligible
unless it is artificially slowed down or used off-line.

The dynamic debugger reevaluates queries whenever their results may change. Another
approach useful for monitoring queries would be to reevaluate queries at regular time intervals
regardless of changes. This method may be advantageous when a change set is difficult to
determine or to achieve better efficiency for costly queries. However, the timer based
reevaluation does not guarantee an efficient reevaluation nor does it produce all results. The
transient failures may be lost if animating reevaluation is applied. We decided that such loss of
results is unacceptable for debugging. However, an imprecise animation may be helpful for
programmers trying to understand program dynamics. Consequently, a full implementation of
the debugger could include an efficient way to reevaluate queries at regular time intervals.

To summarize, monitoring queries are useful for understanding and visualizing program
behavior. With slight modifications our debugger supports monitoring queries. Unless the result
changes very rapidly, the additional overhead of monitoring query execution is insignificant
when compared to similar debugging queries.

4.7 On-the-fly Debugging

The current implementation of the dynamic query-based debugger requires users to specify
gueries before the program execution starts. Queries are enabled from the beginning of the
program execution and remain active until its end. These requirements diminish the usefulness
of the debugger because users cannot restrict queries to parts of the program execution and
cannot ask new queries in the middle of a program run. An on-the-fly debugging
implementation removes these two restrictions.

The original debugger implementation could not support on-the-fly debugging because the
debugger had to know a query and its change set to instrument class files at load time. The class
loader then instrumented the assignments to the monitored fields and the creations of the
domain objects while loading Java class files. Class files cannot be instrumented after loading

75

16: getstatic 133 // Get debugger activation flag

19: ifeq 14 (33) // If debugger disabled go to bytecode 33
/' If debugger enabled get debugger parameters,
/I perform putfield, and invoke debugger

22: dup2

23: putfield 35

26: pop

27: invokestatic 127

30: goto 6 (36) // Go to bytecode 36

33: putfield 35 // Perform original putfield
36: // end of instrumented block

Figure 31. On-the-fly debugging instrumentation
without changing the Java Virtual Machine. On the other hand, changing the JVM would
compromise the portability of the debugger across different Virtual Machines.

On-the-fly debugging is implemented by instrumenting all constructors and all field
assignments during class load time. Around eatield code the debugger inserts a test and a

call to the debugger if the debugger is enabled. If the debugger is not enabled, the program
executes only two additional bytecodes per gatiald bytecode: a load of a debugger flag and

a conditional jump to the originalifield. Figure 31 shows the instrumentation performed on a
single putfield bytecode. The “fast path” has only two extra bytecodes. However, if the
debugger is enabled, the overhead is higher. In this case, the debugger has to replicate the
reference to the updated object, pass it to the debuggermethod and then invoke that
method.

To support on-the-fly debugging, the debugger has to keep collections of objects belonging to
all classes. These collections are necessary to evaluate queries given by users. Since the current
debugging API does not allow debuggers to retrieve all objects of a class, debuggers have to
track creation of all program objects. Program object tracking, although inexpensive by itself,
becomes costly because of the excessive memory use—for each object created by a program,
the debugger has to maintailfmeakReference object and space in the domain collection.
Referring to domain objects through weak references allows the Java Virtual Machine garbage
collector to collect all objects that are referenced only by the debugger. However, even though
domain objects are garbage collected, the weak references themselves remain in the collection,
so the collection grows as the program runs. Some programs like the gas tank simulation create
so many temporary objects that weak references fill all available memory. To prevent such
internal garbage, a more sophisticated implementation uses an internal “garbage collector” to
recycle the weak references no longer pointing to the reachable objects. Unfortunately, the

76

internal garbage collection of weak references adds an additional overhead and should be used
only when the program runs out of memory without it.

4.7.1 Alternative Implementations

On-the-fly debugging could be implemented using alternative techniques that may possibly
increase the debugger efficiency. One approach would be to change the Java Virtual Machine.
Even though we did not pursue this approach because of its lack of portability, JVM changes
may lead to the most efficient implementations. These changes could be simple or
sophisticated. A simple JVM charigeould allow the debugger to retrieve all objects of a class.
Such capability would remove the necessity to track all objects of all classes and would reduce
both the direct object tracking overhead and the excessive memory use by weak references.

More sophisticated JVM changes would allow to instrument already loaded classes and avoid
the overhead of extra bytecodes surrounding patiéid bytecode.

As mentioned above, JVM changes are not portable. An alternative technique to speed up a
debugger would be to use shadow classes. In other words, while the debugger is not enabled, the
program would execute the code that is instrumented to check the debugger activation only at
the beginning of the methods and possibly at the back branches of the loops. When the debugger
is enabled, it would generate fully instrumented versions of the classes. Such fully instrumented
shadow methods would be invoked through the redirection at the beginning of the regular
methods. This method reduces the overhead of the instrunpariked execution but does not

solve the problem of object tracking. Also, the debugger activation would be delayed until the
instrumentation point is reached. Due to this delay, the debugger may miss some errors.

4.7.2 Experimental Results

To evaluate the on-the-fly debugger, we performed the following measurements. First of all,
since programs instrumented by the debugger suffer a slowdown even when the debugger is not
enabled, we measured this slowdown. Table 13 shows slowdowns together with the total field
assignment frequencies for SPECjvm98 programs as well as microbenchmarks. This table
indicates that adding two bytecodes after gagleld costs less than 70% for applications with

a median overhead of 25% and 3.3 times for a microbencAmark

If the debugger is enabled, but the query is never evaluated, for example, because domains
contain only non-instantiated classes, programs suffer a larger slowdown. In this case, the
instrumented byte code invokes the debuggemethod. This method at the very least checks
whether the changed object is a domain object. With the debugger enabled, but no query ever
evaluated, the applications have a slowdown ranging up to 3.14 with a median overhead of 62%.

1 Implemented for JDK 1.1.5 during the initial design of the query-based debugger.

2 In the current JVM/JIT, the insertion of the same two bytecaftes the putfield bytecode instead iof front of it reduces
overhead from 70% to 40% for compress. This phenomenon does not occur with the JIT disabled, and we cannot explain it.

77

Total o
e of | smment| CUOTS | Disabled | Enabled
Application : 4 y progra debugger debugger
field (field execution | o atn slowdown
assignments| assignments| time (S)
per second)
1. Compress 392,000,000 7,800,000 50.4 1.70 3.14
2. Jess 25,000,000 1,100,000 22.45 1.30 1.54
3.Db 67,000 897 72 1.0 1.0
4. Javac 100,000,000 2,600,000 38 1.27 1.62
5. Mpegaudio 148,000,000 2,600,000 49.5 1.25 1.96
6. Jack 5,700,000 214,000 26 1.15 1.19
7. Ray tracer 44,000,000 2,200,000 17 1.12 1.62
8. Decaf 7,900,000 528,000 15 1.15 1.40
9. Ideal gas tank 4,000,000 70,000 57 1.27 2.0
10. Microbenchmark| 100,000,000 40,000,00(24 3.28 11.14

Table 13. On-the-fly debugging overhead

The microbenchmark slowdown is 11.14, a number increased by the fact that the
microbenchmark assigns only to a long integer field which costs more to instrument. Both
experiments above do not include the object tracking overhead.

Finally, if a query needs to be reevaluated, the additional slowdown to reevaluate the query
depends on the query. A large part of the query reevaluation time is consumed by the domain
collection maintenance and by extra garbage collection. For example, in selection query 11,
36% of the query evaluation time was due to the object collection and additional GC overhead,
17% of the time was consumed by the domain class check. Overheads for all queries are given
in Table 14. Selection overhead ranges up to factor 9.5 with a median of 5.5. It is noticeable that
selection query overheads almost totally depend on the program executed and neither on the
query itself, nor on the query reevaluation frequency. The low cost of selection reevaluation
seems to be overshadowed by large overheads of on-the-fly instrumentation, domain collection
maintenance and garbage collection.

Join query overheads are very high. Query 15 was aborted after running for more than a day.
However, on-the-fly debugging may be usable when programmers only need to check query
results during a part of program execution.

78

c

% Invocation
Query 'g frequency

IS (events / s)

)

1. Moleculel z. z.x > 350 3.23 15,000

2.1dx. xtype<O 1.83 16,000

3. spec.benchmarks. 202 jess.jess.Token z. z.sortcode == -1 4.05 169,000

4. spec.benchmarks. 201 compress.Output_Bufferz. z.OutCnt<0 6.3

5. spec.benchmarks. 201 compress.Output Buffer z. z.count() <0 5.48

6. spec.benchmarks. 201 _compress.Output_Buffer z. z.lessOutCnt((®.72 1,900,000

7. spec.benchmarks. 201 _compress.Output_Buffer z. 936

z.complexMathOutCnt(0) '

8. spec.benchmarks. 201 compress.Compressor z. z.in_count<0 5.58 933,000

9. spec.benchmarks. 201 compress.Compressor z. z.out_count|< 0 5.54

10. spec.benchmarks._201_compress.Compressor z. 954 196,000

z.complexMathOutCount(0) '

11. spec.benchmarks._205_raytrace.Pointp. p.x == 4.82 787,000

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 4.82 2,300,000

13. Moleculel z; Molecule2 z1.
zXx==21x && z.y == z1.y && z.dir == z1.dir && 21.82 54,000
z.radius == zl.radius (33x33 hash join)

14. Lexer |; Token t. l.token ==t && t.type == 27
(120,000x600 hash join) 6.4 25,000

15. spec.benchmarks._205_raytrace.Point p;
spec.benchmarks. 205 raytrace.IntersectPt ip. Inf 350,000
p.z==ip.t&& p.z<0 (85,000x8,000 hash join)

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1. 384 1.500.000
z1.0utCnt == z.InCnt && z1.0utCnt < 100 && z.InCnt >0 T
(1x1 hash join)

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
21.0utCnt < 100 && z.out_count > 1 && 263 2,600,000
z1.0utCnt/ 10 > z.out_count (1x1 join)

18. Test5z. zx<0 28 42,000,000

19. TestHash5 th; TestHashl thl. th.i==thl.i (1x20 hash join) 935

: . - 40,000,000

20. TestHash5 th; TestHashl thl. th.i<thl.i (1x20 join) 935

Table 14. On-the-fly query overhead

79

4.8 Related Work

We are unaware of other work that directly corresponds to dynamic query-based debugging.
Extensions of object-oriented languages with rules as in R++ [128] provide a framework that

allows users to execute code when a given condition is true. However, R++ rules can only
reference objects reachable from the root object, so R++ would not help to findderors

we discussed. Due to restrictions on objects in the rule, R++ also does not handle join queries.

A significant amount of work exists on general rule-based extensions of OO languages.
Differently from R++, such systems use OPS5 [33][63] for rules, which allow full join
semantics including negation (non-existence of objects satisfying the given constraint) in rules.
Most systems extend C++ or Java [29][65][80][94][145]. Such systems could serve as
foundations for query-based debugger implementations, though currently they are not used for
debugging. However, rule-based extensions of object-oriented languages significantly differ
from query-based debugging. Most of these systems do not handle method invocations in rules.
Only some of them, like RAL/C [65] and OPSJ [145] do allow method invocations. Most
implementations are based on source code instrumentation. These systems also require
prescribed programming styles or necessitate writing interface code. For example, ILOG and
RETE++ generate class skeletons that have to be used by programmers for their classes; OPSJ
preprocesses Java code and recompiles affected classes. The CLIPS compiler and ILOG rules
require additional interface code. In ILOG, programmers have to supply and indicate methods
setting and reading object fields. On the other hand, the dynamic query-based debugger does
not require source code to be available; it also automatically determines change set and
instruments necessary constructors and field assignments.

The systems usually implement RETE [64] rule-matching and activation algorithm or its
extensions [28] and optimizations [3][55]. This algorithm does not consider different join
orders. However, some other algorithms proposed in rule-based language implementations
optimize join ordering or even execute all joins in parallel [142]. Rule-based systems also
employ specialized code generation for efficient rule evaluation.

Speed comparisons between the query-based debugger and rule-based language extensions are
difficult. Most of the rule system benchmarks focused on the number of simultaneously
supported rules in slowly changing rule-only programs. Such an environment is very different
from rapidly changing object graphs in object-oriented programs. Only recent measurements
[145] try to evaluate the performance of object programs extended with rules.

In addition to the research discussed in the background section (section 2), Sefika et al.
[149][150][151][152] implemented a system allowing limited, unoptimized dynamic selection
gueries about objects in the Choices operating system. The Choices visualizer shows users all
instances of a given class that satisfy a certain property. The view is animated as the program
executes, however the granularity of animation has to be at a method-call level or coarser.
Choices implementation uses inter@tlss objects to track all objects of all classes. The object

80

classes themselves are “aware” of the visualization and provide views corresponding to their
function, e.g. CPU activity shows utilization ratio. Unlike a query-based debugger, the
application (Choices) is specifically instrumented to allow queries.

Dynamic query-based debugging extends work on data breakpoints [180]—breakpoints that
stop a program whenever an object field is assigned a certain value. Pre-/postconditions and
class invariants as provided in Eiffel [132] can be thought of as language-supported dynamic
gueries that are checked at the beginning or end of methods. Unlike dynamic queries, they are
not continuously checked and they cannot access objects unreachable by references from the
checked class. Dynamic queries could be used to implement class assertions for languages that
do not provide them. The current implementation of dynamic queries cannot use the “old” value
of a variable, as can be done in postconditions. We view the two mechanisms as complementary,
with queries being more suitable for program exploration as well as specific debugging
problems.

Consens et al. [44][45] use the Hyisualization system to find errors using post-mortem event
traces. De Pauw et al. [52] and Walker et al. [182] use program event traces to visualize program
execution patterns and event-based object relationships, such as method invocations and object
creation. This work is complementary to ours because it focuses on querying and visualizing
runtime events while we query object relationships.

Dynamic queries are related to incremental join result recalculation in databases [26][34].
Buneman and Clemons [34] introduced the notion of datatdeger, a program that monitors
database for changes. The authors discuss complex alerters that monitor several relations. Such
alerters are similar to join queries in debugging. Buneman and Clemons observe that some
updates are ignorable independently of the relation contents. Our debugger uses similar ideas to
ignore updates to irrelevant domains and fields. Blakeley, Larson, and Tompa [26] discuss the
conditions under which a change in the database does not affect the view. The authors also
propose the algorithms to incrementally update database views. We use insights of this work to
implement the incremental query evaluation scheme. First, the dynamic debugger tries to detect
and discard irrelevant events. Second, it uses the incremental reevaluation techniques to update
the query result. Stonebraker [161] proposes query (update) rewriting techniques to preserve
integrity constraints in databases. Such integrity constraints are related to database views and
dynamic debugging queries. Coping with inter-object constraints in the extended ODMG
model [24] may require methods similar to dynamic query-based debugging.

Active databases (POSTGRES, HIiPAC) [21][130] include the notion of triggers (event-
condition-action triples) that are similar to the dynamic queries. Some active databases allow
only conditions relating to a single relation or a class in object-oriented databases. Ariel [81]
contains OPS5 style rules with optimized A-TREAT matching algorithm. The A-TREAT
incorporates index based selection evaluations and space-saving join optimizations. Since
Ariel's rules essentially mimic the OPS5 rule structure, comments made about rule-based
programming languages apply to it as well. ADAM [54], Ode [10][71][72][126], and Sentinel

81

[15] integrate triggers with object-oriented programs. ADAM and Sentinel establish flexible
frameworks for events and rules by treating them as first-class objects. Ode associates triggers
with object classes. However, Ode’s triggers cannot refer to objects outside of a class, i.e., Ode
does not allow “join” triggers. Sentinel supports multi-class queries, but join evaluation is left

to the implementor of the rules. Consequently, the join-query support is not adequate.

Ode and Sentinel allow method invocations in triggers, a feature similar to debugging queries.
In addition, triggers in these systems can contain temporal relationships that are not supported
in dynamic queries. For example, the trigger can be activated if two events occur one after
another. Ode’s triggers can be also set on “read” and “transaction” events. Such events are not
used for dynamic queries, because they do not change the system state. Finally, Ode implements
triggers by compiling the associated O++ (C++ extension) code.

Starburst [189][190][191] is a relational database system with active rules that can contain
general SQL queries in their conditions. Starburst does not allow incremental evaluation of rule
conditions, although an extension allowing incremental evaluation has been proposed [20].
Unlike dynamic queries and most other active databases, Starburst rules are evaluated at the end
of operation blocks usually corresponding to transactions. Such semantics provide one way of
coping with the consistency problem (Section 6.2.1).

While it is difficult to evaluate the efficiency of rule matching in active databases, it is clear that
they have low overhead because they are invoked infrequently. First, the events contain only
certain method activations. Second, the databases change much more slowly than object-
oriented programs. In contrast, in query-based debugging, the cost of all reevaluations is
important. |.e., an optimization that reduces the cost by even a little can save a lot of overhead
if this reduction affects all reevaluations. For that reason, customized selection code
significantly speeds up query reevaluations. With rapidly changing objects and initially
unknown domain selectivities, a full-fledged debugger could optimize the join ordering during
runtime. Costs and benefits of such optimization have not been evaluated.

4.9 Summary

The cause-effect gap between the time when a program error occurs and the time when it
becomes apparent to the programmer makes many program errors hard to find. The situation is
further complicated by the increasing use of large class libraries and complicated pointer-linked
data structures in modern object-oriented systems. A misdirected reference that violates an
abstract relationship between objects may remain undiscovered until much later in the
program’s execution. Conventional debugging methods offer only limited help in finding such
errors. Data breakpoints and conditional breakpoints cannot check constraints that use objects
unreachable by references from the statement containing the breakpoint.

We have described a dynamic query-based debugger that allows programmers to ask queries
about the program state and updates query results whenever the program changes an object

82

relevant to the query, helping programmers to discover object relationship failures as soon as
they happen. This system combines the following novel features:

« An extension of static query-based debugging to include dynamic queries. Not only does
the debugger check object relationships, but it determines exactly when these relationships
fail while the program is running. This technique closes the cause-effect gap between the
error’s occurrence and its discovery.

» Implementation of monitoring queries. The debugger helps users to watch the changes in
object configurations through the program’s lifetime. This functionality can be used to
better understand program behavior.

The implementation of the query based debugger has good performance. Selection queries are
efficient with less than a factor of two slowdown for most queries measured. We also measured
field assignment frequencies in the SPECjvm98 suite and showed that 95% of all fields in these
applications are assigned less than 100,000 times per second. Using these numbers and
individual evaluation time estimates, our debugger performance model predicts that selection
gueries will have less than 43% overhead for 95% of all fields in the SPECjvm98 applications.
Join queries are practical when domain sizes are small and queried field changes are infrequent.

Good performance is achieved through a combination of two optimizations:

 Incremental query evaluation decreases query evaluation overhead by a median factor of
160, greatly expanding the class of dynamic queries that are practical for everyday
debugging.

» Custom code generation for selection queries produces a median speedup of 15, further
improving efficiency for commonly occurring selection queries.

On-the-fly dynamic debugging has been implemented but currently suffers a high overhead.
Selection slowdowns range up to factor 9.5 with a median of 5.5. Further optimizations could
reduce this overhead.

By combining a novel idea of query-based programming with dynamic query result updates and
by providing an efficient implementation, we have shown that dynamic query-based debugging
is a practical debugging tool.

83

84

5 Query Analysis and Classification
“Is it just me, or does it seem to you that | get

more than my share of troubles?”
Job

“What did | do wrong?”
Lear, Rex

5.1 Introduction

Previous chapters of this dissertation motivated and proposed use of queries for program
debugging, introduced a query model, and described implementations of static and dynamic
guery debuggers. This section explores the breadth of object relationships and corresponding
gueries in software systems. By listing numerous queries applicable to the programs from

different domains, this section investigates typical use of queries by programmers. Even though
gueries in this section were conceived solely by the author (sometimes in a discussion with

other programmers), the query list covers a wide variety of domains and structures. Such a list
is helpful in selecting queries for experiments, for establishing common query structures and

requirements for debugger implementations. According to the requirements, different debugger
features may have different implementation and optimization priorities. Furthermore, classes of

similar queries from different programming domains can be summarized into query patterns

that may warrant special debugger support.

Our investigation of the query catalogue suggests that query-based debugging is widely
applicable, and that the current query model and its implementation support most queries. The
research also reveals additional features that should be supported in a full implementation of a
debugger.

5.2 Queries in Software Systems

This section explores object relationships and related queries in a wide range of applications.
The queries cover loosely defined domains, such as networks, graphical user interfaces,
programming systems, simulations, and resource management systems. The queries were asked
both on real programs and as thought experiments. The author designed most queries by
investigating programs or system models. However, some queries were suggested by other
programmers or were paraphrased from the existing testing code.

Query grouping by domain indicates that although queries do not strictly depend on the
application domain, similar queries can be asked about different applications of the same
domain.

A table summarizing all queries can be found at the end of the section. The queries that were
asked about Self programs are written in Self syntax. All other queries use Java syntax.

85

5.2.1 Networks

The following sections illustrate query use in various network simulations and network
protocols.

5.2.1.1 Simulation of a Cellular Communication Network.

The program in this section simulates a cellular communication network [168]. The program
was not implemented but only outlined. The main components of the network are mobile users
and base stations in a cell grid. Users periodically request and release communication channels.
Base stations allocate channels for users using one of the simulated protocols. To avoid
interference, the same channel cannot be used in the neighboring cells. Additionally, various
simulated faults can occur in the network.

In this system, there are a number of interesting queries that can be either answered at a
breakpoint or monitored while the program is running. The query

baseStation b; channel c. b.usedChannels.contains(c)

shows the basic view of all base stations and channels that are currently used by base stations.
This query can be answered during a breakpoint or used to visualize the station-channel
assignments. The query

baseStation b1 b2; channel c.
b1l.usedChannels.contains(c) && b2.usedChannels.contains(c) && bl.isNeighbor(b2)

checks whether the neighborhood cells do not use the same channel. This query can be used to
verify station-channel assignments while the program is running. Furthermore, queries can
check whether clients and base stations have the same view on the channel assignment:

assignments a; baseStation b; channel c1 c2; client cl.
b.assignments.contains(a) && a.client == cl && a.channel == c1 &&
cl.assignedChannel == c2 && cl1 !=c2

This query can be used to verify the consistency of station-channel assignment with client-
channel assignment. To detect handling of client failures one may ask a query

client cl. cl.active && (cl.currentTime - cl.channelRequestTime > LIMIT)

that shows all clients holding channels longer than a set limit. This query would show the clients
that are faulty during the program execution.

5.2.1.2 Token-Based Network

In a token-based network system, the queries would check the correctness of token use. The
token in a network should be unique. If there are different tokens for different groups on the
network, there should be only one token per group. Enforcing these constraints can be done
with the following dynamic queries.

Is there more than one token in the system?

86

Token t1 t2.t1 =12

Is there more than one active token in the system?
Token t1 t2. t1.active && t2.active && t1 =12

Is there more than one active token belonging to the same group? There are two different
queries that can answer this question:

Token t1 t2. tl.active && t2.active && tl.group == t2.group && t1 =12
Group g1; Token t1 t2. t1.active && t2.active && gl.contains(tl) && gl.contains(t2) &&
tl1=t2
Does the same node have different tokens?
Node n; Token t1 t2. n.tokens.contains(tl) && n.tokens.contains(t2) && t1 !=t2
Node n; Token t1 t2. t1.belongsTo(n) && t2.belongsTo(n) && t1 !=t2

5.2.2 Graphical User Interfaces

Graphical user interfaces consist of numerous objects interacting with each other.
Consequently, they provide a rich source for query-checked constraints.

5.2.2.1 The Self Graphical User Interface
The queries about the Self user interface were discussed in section 3.2.3.1. This section recaps
the queries. Finding all morphs directly contained in at least two morphs:

morph *a b c. (a morphs includes: b) && (c morphs includes: b) && (a !=c)
Are row morphs usually embedded into column morphs or vice versa? The following two
gueries give insight into this question:

objectOutliner a; rowMorph b; columnMorph c. (a morphs includes: b) && (b morphs
includes: c)

objectOutliner a; columnMorph b; rowMorph c. (a morphs includes: b) && (b morphs
includes: c)

We can find object outliners that contain column morphs and the ones that contain row morphs:
objectOutliner a; columnMorph b. (a morphs includes: b)
objectOutliner a; rowMorph b. (a morphs includes: b)

The count of tuples in the result can be used to calculate the number of outliner referenced
column morphs that do not contain row morphs.

At last we find object outliners containing no morphs at all:
objectOutliner a. (a morphs size = 0)

Additional queries about morph organization into hierarchical structures:
objectOutliner a; smallEditorMorph b. (a titleEditor = b) && (b owner = a)

87

objectOutliner a; columnMorph b; labelMorph c.
(a morphs includes: b) && (c owner = b) && (a moduleSummary = c)

Apart from the Self GUI, queries can be asked about other GUI systems. Relationships among
windows, widgets, rulers, and menu bars can be explored. For example, assume that a graphical
widget references its parent window, and that this parent window must in turn reference the
enclosed widget. This relationship can be verified by the query

widget wid; window win.

wid.window == win &&

I win.widget_collection.contains(wid)

5.2.2.2 Graphical Object Properties

Graphical programs (user interfaces, painting, CAD, and picture manipulation programs) use
simple graphical objects such as points, rectangles, and lines to build more complicated objects.
Even though low level graphical objects are simple, relationships between them can be
complex. Additionally, points and lines are usually largest classes in graphical programs, so
finding objects violating constraints by hand is not easy. For example, the Self graphical user
interface may at times contain more than ten thousand points and rectangles. Here are some
gueries that verify various interobject constraints.

Find a point and a rectangle, such that the point has thexsarogdinate as thecoordinate of
the origin of the rectangle, and the poimtsoordinate is fixed:

point a; rectangle b. (a x = b origin y) && (a x = 6)

Find a point with a certaixcoordinate:
point a. a x = 256

Find a point and a rectangle with the same relationship as in the first query, but the rectangle has
to also have height of 1000, and there exists another rectangle of the same height:

point a; rectangle b b1. (a x = b origin y) && (b height = b1 height) && (b !=b1) &&
(b1 height = 1000)

point a; rectangle b bl. (a x = b origin y) && (b height = bl height) && (b !=b1) &&
(b1 height > 1000)
Find two rectangles such that one of them has much smaller height than the other, but much
larger width:
rectangle b bl. (b height > (b1 height + 800)) && (b width < (b1 width - 900))

5.2.2.3 SPECjvm98 Ray Tracer

The ray tracing program from the SPECjvm98 benchmark suite creates 85,000 point objects
and 8,000 intersection point objects while rendering a scene. Several queries can be asked about
the program objects.

88

Can az coordinate of an intersection point be negative?
IntersectPtip. ip.Intersection.z <0

Are there any points with coordinatequal to 1?:
spec.benchmarks._205 raytrace.Pointp. p.x ==

Are there any points with the distance from the origin greater than 100 million?
spec.benchmarks._205 raytrace.Point p. p.farther(100000000)

Are there such points with a negativeoordinate equal to thdield of IntersectPt?

spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z==ip.t&&p.z<0

5.2.3 Programming Systems

Programming systems such as compilers and runtime libraries perform complicated data
structure creations and transformations. It is important that the structures remain correct
through the program’s execution because errors could get compounded by later transfor-
mations. In addition, runtime system errors may be difficult to detect because they appear only
under certain conditions. Subtle errors may only influence the underlying system’s efficiency
without breaking its “correctness.” This section discusses several programming systems.

5.2.3.1 Self Virtual Machine

One way to test object relationships involves using special testing code written for each
application. For example, the Self virtual machine [88][89] contains over 10,000 lines of
testing-related C++ code. After examination of the Self VM testing code, it appears that queries
could have been used to verify the VM more efficiently. Some verification code iterates through
the objects of a class checking simple properties. Such code could have been expressed by
gueries. For example, the verification codeyasévectorOopClass checks whether the object has
correct length and byte array. Other testing methods check for length and sizes of various data
structures. These properties can be tested using simple queries

ByteVectorOop a. a.length() <0
ByteVectorOop a. a.bytes() == NULL
objVectorOop a. a.length() <0
oopsOop a. a.size() <1

Similarly fctProxyOop is tested for
foreignOop a. a.addrs()->noOfArgs->is_smi()

Verifying that C pointers point to correct objects:
C_pointer a. a.hi->is_smi()
memOop a. a.mark()->is_mark()

89

Queries and testing code can coexist through the query use of verification methods.
memOop a. a.verify_oop()
stringOop a. !a.is_old()
stringOop a. a != a.Memory->string_table->lookup(a.bytes(), a.length())
vFrameQop a. a.is_live() && (a.method()->has_code())
vFrameOop a. a.is_live() && ('a.oop(a.locals())->is_smi())

An important part of answering these queries is reporting. When some of these invariants are
violated, the programmer may not want to see just the resulting object collection, but may want
to receive an explanatory message. To support such reporting, the full implementation of the
debugger should have auxiliary output facilities that integrate the result collection with custom
messages.

5.2.3.2 Understanding the Cecil Compiler

The analysis of a prototype Cecil [38] compiler written in Self by Craig Chambers, Jeff Dean,
and David Grove is reported in section 3.2.3.2. This section summarizes the queries used. The
compiler can be explored by finding compiler objects corresponding to Cecil constructs in the
compiled Cecil program and determining common use patterns. For example, a simple Cecll
program compiled by the compiler did not have hamed types with instantiations:

cecil_named_type a. (a instantiations size != 0)

Also, the query below showed that only three Cecil types had subtypes:
cecil_named_type a. (a subtypes size !=0)

Query finding Cecil methods returning integers:
cecil_method a. (a resultTypeSpec printString = ‘int’)

All of these queries could be asked while the program is running to visualize the result set.
Another query shows that Cecil programs can have formals with the same name in different

methods:

cecil_method a b; cecil_formal c d.
(aformals includes: c) && (b formals includes: d) && (c name =d name) && (c '=d) &&
(a!=b)
Finally, a query checks whether a Cecil object’s context includes a variable binding such that
the bindings’ value is the same Cecil object:
cecil_named_object a; cecil_top_context b; cecil_object_binding c.
(a defining_context = b) && (b varBindings includes: c) && (c value = a)

Queries can be used to monitor object relationships in other object-oriented compilers and
parsers. Monitoring relationships between tokens in the input stream may help users to
understand the compiler’s error detection techniques.

90

5.2.3.3 Javac Compiler

Thejavac Java compiler, a part of Sun’s JDK distribution builds an abstract syntax tree (AST)
of the compiled program. Several queries about the state of the AST were discussed in the
introduction and section 4.1. The first query finds an AST corrupted by an operation that
assigns the same expression node to therfyatdf two different parent nodes:

BinaryExpression* el, e2. el.right == e2.right && el = e2

Thejavac compiler also maintains a constraint th&tesdExpression object that shares the type
and the identifier name with RieldDefinition object must reference the latter through ftéie
field:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field |=fd

5.2.3.4 Decaf Compiler

The Decaf Java subset compiler was written at UCSB for an undergraduate compiler course.
This compiler parses a Java program and generates executable byte code. Queries about the
compiler check properties of objects corresponding to the compiled program objects. For
example, the following queries check whether there are identifier objects with negative and zero
type fields:

ldx. Xtype<O
Idx. x.type==0

The following query checks whether the lexical analyzer finds any error tokens:
Lexer I; Token t. l.token ==t && t.type == ERROR

Similar query checks whether the lexical analyzer finds any uninitialized tokens:
Lexer I; Token t. l.token ==t && t.type == UNINITIALIZED

The number of tokens in a compiled program may be large, making these queries difficult to
check by hand.

5.2.3.5 Jess Expert System

The expert system belonging to the SPECjvm98 benchmark suite reads in a rule-based program
and executes it. The following query finds tokens with negative sortcodes:

spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1

5.2.4 Games and Simulations

Computer games and computer simulations create webs of objects rich with constraints.
Simulations of airline routing systems and manufacturing plants should be performed precisely
to avoid costly design updates during their physical implementation. This section describes
errors that can be found in simple games and more complicated simulations.

91

5.2.4.1 Tic-Tac-Toe

Some queries can be asked about an implementation of the tic-tac-toe game. To make a move
the program has to find an empty cell. The query can check whether such a cell exists:

Cell a. a.value == Empty

In certain situations, there exist moves that would win the game. A query can be used to find
such moves. The following query determines the winning move that would fill a column:
Cell a b c. a.value == b.value && a.x == b.x && b.x == c¢.x && c.value == Empty &&
a.value !'= Empty

Another three queries would be necessary to check for winning moves in the rows and
diagonals.

5.2.4.2 Chess

Chess is a game that has numerous interactions between different pieces on the board. This
section checks only some positions that can occur on a virtual chessboard. For example, a query
can be used to find out if one side has put the other in “check”:

King k; Figure * f. f.attacks(k)

Another query can be used to check whether both rooks are in the same column:
Rook rl r2. rl.color == r2.color && rl.x ==r2.Xx && r1 !1=r2

5.2.4.3 ldeal Gas Simulation

There are several ideal gas simulation programs implemented in Self and Java. These applets
simulate a tank with ideal gas molecules moving in the tank and colliding with the tank walls
and each other. Some of the queries were discussed in section 4.2.1. All gas molecules have to
remain within the tank:

Molecule* m. m.x <0 || mx>X_RANGE || m.y<O0]| my>Y_RANGE

Molecules should not occupy the same position as other molecules:
Molecule* m1 m2. mlx==m2.Xx&& mly==m2.y && ml!=m2

Moleculel z; Molecule2 z1.
zx==2z1x&& z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius

atom a b. a.center == b center && a'!=b

5.2.5 Resource Management Systems

A loosely coupled collection of applications that can be called resource management systems
deals with entities managing different resources. The following sections describe some of the
applications.

92

5.2.5.1 Views and Users

In this section, we consider a system in which users simultaneously subscribe, read, and edit
different views. One such system is the Usenet news system. As it is known, the number of
views can be measured in thousands, and the number of users can reach tens and hundreds of
thousands. A programmer trying to debug such a system needs to be able to check how users
interact with the views. For example, to visualize users and views to which the users subscribe,
programmer may ask a query:

View v; User u. u.subscribesTo(v)

All views subscribed to or edited by at least two users are given by:
View v; User u z. u.subscribesTo(v) && z.subscribesTo(v) && u =z
View v; User u z. u.edits(v) && z.edits(v) && u =z

Are users reading different views at the same time?
View v1 v2; User u. u.reads(vl) && u.reads(v2) && v1 = v2

Do different users subscribe to multiple same views?
View v1 v2; User u z. u.subscribesTo(vl) && z.subscribesTo(vl) && u =z &&
u.subscribesTo(v2) && z.subscribesTo(v2) && v1 !=v2
Are the same views edited by at least two users from the same site?
View v; User u z. u.edits(v) && z.edits(v) && u != z && u.site == z.site
Site s; View v; User u z. u.edits(v) && z.edits(v) && u != z && s.hosts(u) && s.hosts(z)

5.2.5.2 Room Scheduling System

A scheduling system of university rooms has reservation relationships between rooms and
courses during different time slots. For example, the debugger can check whether the same
group reserved two different rooms at the same time:

Room rl r2; Group g1; Slots s1 s2. rl.slots.contains(sl) && r2.slots.contains(s2) &&
rl!=r2 && sl.time == s2.time && g.reservations.contains(sl) &&
g.reservations.contains(s2)

Room rl r2; Slots s1 s2. rl.slots.contains(sl) && r2.slots.contains(s2) &&
rl!=r2 && sl.time == s2.time && sl.group == s2.group

5.2.5.3 Process and Resource Simulation

Find all tasks with indices less thamocessedindex that have not been executed by any
processes:

task t; process p. Op (! p.execute.contains(t)) && t.index < ProcessedIndex

This query requires extension of the query model to include a universal quantifier.

93

5.2.5.4 Airline Plane Routing Service

The software system discussed here is a flight reservation and plane routing system. Queries
may check an assignment of a plane to a flight. For example, a query may require a plane to have
enough seats for all passengers and a return flight to the same airport:

Flight f f1; Plane p. f.seatsBooked < p.seatsInPlane && f.assigned(p) &&
fl.seatsBooked < p.seatsInPlane && fl.unassigned && fl.departure > f.arrival &&
f.destination == fl.startingPoint && fl.destination == f.startingPoint

Simpler queries may find tickets issued by the airline to a destination not served by the airline
and tickets in which flight arrival time in a multi-leg trip is later than the next flight departure
time:

Ticket t; Airline a. ! a.services(t.destination)

Ticket t. t.firstFlight.arrival > t.secondFlight.departure

5.2.6 Miscellaneous Programs

This section covers programs that did not fit into the categories above.

5.2.6.1 VLSI Layout Programs

A simple gate and path layout program coded in Smalltalk allows users connect gates into a
circuit and test it with various inputs. The following query checks for connections attached to
both input and output of a gate.

gate a; connection b. a.output == b && a.inputs.contains(b)
The program might be intelligent enough to prohibit connecting a “true” value to an “or” gate,
and a “false” value to an “and” gate. The following queries check these conditions:
trueElement a; connection b; orGate c. a.output == b && c.inputs.contains(b)
falseElement a; connection b; andGate c. a.output == b && c.inputs.contains(b)

5.2.6.2 Java Animator

The Java Animator applet shows a slide show of series of images stored in a collection. Queries
check whether the image collection, the image duration collection, and the image name hash
table have the same size:

Animator an; Vector images; Hashtable imageNames.
images.size() != imageNames.size() && an.images == images &&
an.imageNames == imageNames

Animator an. an.images.size() = an.imageNames.size()

Animator an. an.images.size() != an.durations.size()

Both image and image name collections should contain the same images:
Animator an; Image im. an.images.contains(im) && ('an.imageNames.containsKey(im))

94

5.2.6.3 SPECjvm98 Compress

Compress is a straightforward compression and decompression implementation that does not
use a lot of object-oriented programming. However, programmers still can use queries to debug
this program. For example, a query can find whether the output count of the output buffer is
negative:
spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0
spec.benchmarks. 201 compress.Output Bufferz. z.count() <0

These two queries check the same constraint using two different methods: comparing a field
against a constant and invoking a method.

Similar queries can be asked about input and output countsoefpeessor object:
spec.benchmarks. 201 _compress.Compressor z. z.in_count<0
spec.benchmarks. 201 _compress.Compressor z. z.out_count <0

Similar queries check for the program points where the out count is equal to zero:
spec.benchmarks. 201 compress.Compressor z. z.OutCnt ==
spec.benchmarks._201_compress.Compressor z. z.out_count ==

Queries can check the relationships between the input count of the input buffer and the output

count of the output buffer. The first query checks whether there is a point in the program when

the output count is less than 100, the input count is greater than 0, and they are equal:
spec.benchmarks._201_compress.Input_Buffer z;

spec.benchmarks._201_compress.Output_Buffer z1.
z1.0utCnt == z.InCnt && z1.0utCnt < 100 && z.InCnt > 0

We can also check when the output count is smaller than the input count:

spec.benchmarks. 201 compress.Input_Buffer z;
spec.benchmarks. 201 _compress.Output_Buffer z1.
z1.0utCnt < z.InCnt

Another query finds out whether the output count of the output buffer is less than 100, the output
count of the compressor is greater than 0, and the output buffer output count is ten times larger
than the output count of the compressor:

spec.benchmarks. 201 compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.0utCnt < 100 && z.out_count > 1 && z1.0utCnt/ 10 > z.out_count
The following query checks when the output counts of compressor and buffer are equal:

spec.benchmarks._201_compress.Compressor z;
spec.benchmarks. 201 _compress.Output_Buffer z1. z1.0OutCnt == z.out_count

95

5.2.7 Query Summary

Table 15 summarizes the queries posed in previous sections. Query attributes are shown using
letters in tables’ columns. The first column of the table contains the query string. The second
column categorizes queries as assertions or visualizations. Queries that have no results unless
an error occurs are callessertion (A)queries, while the queries that have results even in
correct executions are calletsualization (V)queries. The distinction between two sets is
important for the debugger implementation, because the debugger does not have to maintain the
query result set for assertion queries. Consequently, assertion and visualization query
evaluation costs may differ.

The third column indicates whether the querysslaction (S)ahash (H)join, or anested-loop

(N) join. As discussed in section 3.3, join queries are more costly to evaluate and pose an
optimization challenge. The query catalogue may be biased towards the join queries because
the author tried to come up with complex queries.

The special requirement column specifies requirements for the query evaluation in a debugger.
The requirements are grouped into four groups. Some queries can be evaluated only if the
debugger can execute theethods (M)of the underlying programming language. Without
method execution, the expressiveness of the query language would be reduced. The current
implementation can perform method evaluations with a user-supplied change set. Some queries
contain references to objecotllections (C) Though the static Self query-based debugger
allows the use of collections, the dynamic Java debugger does not currently support collections
because most collections are system classes. The Java debugger also does not handle arrays.
The system class (Support is necessary to debug applications that interact with library data
structures. The Java debugger does not support debugging of system classes, while in the Self
world there is no distinction between library and user classes. Finally, some queries need
universal or existentigjuantifiers (Q) The current query model does not provide such support.

The last column of the table classifies queries according to a scheme discussed in the next
section.

The table provides a handy reference for queries of different domains, structures and
requirements. For example, query 1 is a visualization query that uses nested-loop join, and
requires method invocations and collection handling.

Quer Assertion/ | Selection/Join Special Query
y Visualization| (Nested/Hash)| requirements classification
1. baseStation b; channel c. \V N C, M P
b.usedChannels.contains(c)
2. baseStation b1 b2; channel c. A N C,M D
bl.usedChannels.contains(c) &&
b2.usedChannels.contains(c) &&
b1l.isNeighbor(b2)

Table 15: Query examples

96

Query

Assertion/
Visualization

Selection/Join
(Nested/Hash)

Special
requirements

Query
classification

3. assignments a; baseStation b; channel c1 c2;
client cl.
b.assignments.contains(a) && a.client == cl &&
a.channel == c1 && cl.assignedChannel == c2 &&
cl!=c2

A

N, H

C,M

D, P

4. clientcl. cl.active &&
(cl.currentTime - cl.channelRequestTime > LIMIT)

Token t1 t2. t1 1=t2

AV

Token t1 t2. tl.active && t2.active && t1 =12

AV

. Token t1 t2. tl.active && t2.active &&
tl.group == t2.group && t1 !=1t2

T

8. Group gl; Token t1 t2. tl.active && t2.active &&
gl.contains(tl) && gl.contains(t2) && t1 !=12

A

9. Node n; Token t1 t2. n.tokens.contains(tl) &&
n.tokens.contains(t2) && t1 !=t2

AV

C,M

10. Node n; Token t1 t2. t1.belongsTo(n) &&

t2.belongsTo(n) && t1 =12

AV

11. morph * a b c. (a morphs includes: b) &&
(c morphs includes: b) && (a !=¢)

C,M

12. objectOutliner a; rowMorph b; columnMorph c.
(a morphs includes: b) && (b morphs includes: c)

C,M

13. objectOutliner a; rowMorph c; columnMorph b.
(a morphs includes: b) && (b morphs includes: c)

C,M

14. objectOutliner a; columnMorph b.
(a morphs includes: b)

C,M

15. objectOutliner a; rowMorph b.
(a morphs includes: b)

C,M

16. objectOutliner a. (a morphs size = 0)

C,M

17. objectOutliner a; smallEditorMorph b.
(a titleEditor = b) && (b owner = a)

18. objectOutliner a; columnMorph b; labelMorph c.
(a morphs includes: b) && (c owner = b) &&
(a moduleSummary = c¢)

< << < < < <

I IT\w»w Z2 2 Z2 Z2 2 2 Z2 Z2 Z2Z22Z2 uw

P

Tl U\ w O Ol Ul Ul ©v U U YU 000 o

19. widget wid; window win. wid.window == win &&
(! win.widget_collection.contains(wid))

P

20. point a; rectangle b. (a x = b origin y) && (a x = 6)

21. pointa. a x = 256

22. point a; rectangle b b1.
(a x =b origin y) && (b height = b1 height) &&
(b '=b1l) && (b1 height = 1000)

< </ <| »

IonI T
z

U T 9 ©

23. point a; rectangle b b1l.
(a x =b origin y) && (b height = b1 height) &&
(b '=bl) && (b1 height > 1000)

<

I
z

24. rectangle b bl. (b height > (b1 height + 800)) &&
(b width < (b1 width - 900))

Z

25. IntersectPtip. ip.Intersection.z <0

>

26. spec.benchmarks._205_raytrace.Point p.
px==1

ww I

Table 15: Query examples

97

Quer Assertion/ | Selection/Join Special Query
y Visualization| (Nested/Hash)| requirements| classification
27. spec.benchmarks._205_raytrace.Point p. A M D
p.farther(100000000)
28. spec.benchmarks._205_raytrace.Point p; A H P
spec.benchmarks._205_raytrace.IntersectPt ip.
p.z==ip.t&& p.z<0
29. ByteVectorOop a. a.length() <0 A S M P
30. ByteVectorOop a. a.bytes() == NULL A S M P
31. foreignOop a. a.addrs()->noOfArgs->is_smi() A S M D, P
32. C_pointer a. a.hi->is_smi() A S M D,P
33. memOop a. a.mark()->is_mark() A S M D, P
34. memOop a. a.verify_oop() A S M D
35. objVectorOop a. a.length() <0 A S M P
36. oopsOop a. a.size() <1 A S M P
37. stringOop a. la.is_old() A S M D
38. stringOop a. A S M D
a = a.Memory->string_table->lookup(a.bytes(),
a.length()
39. vFrameOop a. a.is_live() && A S M D
(‘a.method()->has_code())
40. vFrameOop a. a.is_live() && A S M D
(fa.oop(a.locals())->is_smi())
41. cecil_named_type a. a instantiations size != 0 V S C D,P
42. cecil_named_type a. a subtypes size =0 \Y S C D,P
43. cecil_method a. Vv S M D, P
a resultTypeSpec printString = 'int'
44. cecil_method a b; cecil_formal c d. V H, N C,M D, P
(a formals includes: c) && (b formals includes: d)
&& (c name =d name) && (c '=d) && (a!'=b)
45. cecil_named_object a; cecil_top_context b; V H, N C,M D, P
cecil_object_binding c. (a defining_context = b) &&
(b varBindings includes: c) && (c value = a)
46. BinaryExpression* el, e2. A , N D,P
el.right == e2.right && el = e2
47. FieldExpression fe; FieldDefinition fd. A H, N D, P
fe.id == fd.name && fe.type == fd.type &&
fe.field != fd
48. Idx. x.type<O0 A S P
49. Idx. x.type==0 \/ S P
50. Lexer |; Token t. |.token ==t && t.type == 27 A H D
51. Lexer |; Token t. |.token ==t && t.type == Vv H D
52. spec.benchmarks._202_jess.jess.Token z. A S P
z.sortcode == -1
53. Cell a. a.value == Empty V S D
54. Cell abc. a.value == b.value && a.x == b.x && Vv H, N D

b.x == ¢.x && c.value == Empty &&
a.value != Empty

Table 15: Query examples

98

Query Assertion/ | Selection/Join Special Query
Visualization| (Nested/Hash) requirements classification

55. Rook rl r2. rl.color == r2.color && rl.x == r2.x V H D
&& r11=r2

56. King k; Figure * f. f.attacks(k)

57. Molecule* m. m.x <0 || mx>X_RANGE ||
m.y <0 || my >Y_RANGE

58. Molecule* m1 m2. ml.x==m2.x &&
mly ==m2.y && ml!=m2

> <
I I w=z=z

zZ
O Ol /o

59. Moleculel z; Molecule2 z1.
zXx==27z1.x && z.y == z1.y && z.dir == z1.dir &&
z.radius == z1.radius

60. atom a b. a.center == b.center && a!=b

61. View v, User u. u.subscribesTo(v)

62. View v, User u z. u.subscribesTo(v) &&
z.subscribesTo(v) && u =z

63. View v, User u z. u.edits(v) && z.edits(v) &&
ul=z

64. View v1 v2; User u. u.reads(vl) && u.reads(v2)
&& vl l=v2

< <| < <[<|>»
Z Z Z2| Z|Z2| I
< £ £ £IL

O O| O 0O 00

65. View v1 v2; User u z. u.subscribesTo(vl) &&
z.subscribesTo(vl) && u =z &&
u.subscribesTo(v2) && z.subscribesTo(v2) &&
vlI=v2

66. View v; User u z. u.edits(v) && z.edits(v) &&
u!=z && u.site == z.site

<
O

67. Site s; View v; User u z. u.edits(v) && z.edits(v) && |/
u !=z && s.hosts(u) && s.hosts(z)

I =2 =2
O

68. Room rl r2; Group g1; Slots s1 s2.
rl.slots.contains(s1l) && r2.slots.contains(s2) &&
rl !=r2 && sl.time == s2.time &&
g.reservations.contains(sl) &&
g.reservations.contains(s2)

69. Room rl r2; Slots s1 s2. rl.slots.contains(sl) && |V H, N M D
r2.slots.contains(s2) && rl !=r2 &&
sl.time == s2.time && sl.group == s2.group

70. task t; process p. Op (! (p.execute.contains(t)) && | A N M, Q D
tindex < ProcessedIndex
71. Flight f f1; Plane p. \/ H, N M D

f.seatsBooked < p.seatsInPlane &&
f.assigned(p) &&

fl.seatsBooked < p.seatsInPlane &&
fl.unassigned && fl.departure > f.arrival &&
f.destination == f1.startingPoint &&
fl.destination == f startingPoint

72. Ticket t; Airline a. ! a.services(t.destination)

73. Ticket t.
t.firstFlight.arrival > t.secondFlight.departure

74. gate a; connection b. a.output == b &&
a.inputs.contains(b)

> > >
I I w2

O O glO

. N
75. trueElement a; connection b; orGate c. N
a.output == b && c.inputs.contains(b)

Table 15:Query examples

99

Query

Assertion/
Visualization

Selection/Join
(Nested/Hash)

Special
requirements

Query
classification

76

. falseElement a; connection b; andGate c.
a.output == b && c.inputs.contains(b)

A

H, N

M

D

77.

Animator an; Vector images;

Hashtable imageNames.

images.size() |= imageNames.size() &&
an.images == images &&
an.imageNames == imageNames

A

H, N

M, S

P

78.

Animator an.
an.images.size() = an.imageNames.size()

79.

Animator an.
an.images.size() != an.durations.size()

80.

Animator an; Image im. an.images.contains(im)
&& (! an.imageNames.containsKey(im))

81.

spec.benchmarks._201_compress.Output_Buffer
z. z.0utCnt< 0

82.

spec.benchmarks._201_compress.Output_Buffer
z. z.count()<O0

83.

spec.benchmarks._201_compress.Compressor
z. z.in_count<O

84.

spec.benchmarks._201_compress.Compressor
z. z.out_count<O

85.

spec.benchmarks._201_compress.Compressor
z. z.0utCnt==0

86.

spec.benchmarks._201_compress.Compressor
z. z.out_count ==

87.

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer
z1.

z1.0utCnt == z.InCnt && z1.0utCnt < 100 &&
z.InCnt>0

< < P T P r r ¥ >

I W 0 uO n unu unu zZz 2 2

U| U/ w©w| ©U U TV W TV T T

88.

spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer
z1.

z1.0utCnt < z.InCnt

89.

spec.benchmarks._201_compress.Compressor
Z;
spec.benchmarks._201_compress.Output_Buffer
z1.

z1.0utCnt < 100 && z.out_count > 1 &&
z1.0utCnt / 10 > z.out_count

90.

spec.benchmarks._201_compress.Compressor
Z;
spec.benchmarks._201_compress.Output_Buffer
z1. z1.0utCnt == z.out_count

91

. mutableString a.
(a asSlotlfFail: [abstractMirror]) isReflecteeSlots

Vv

S

Table 15: Query examples

5.3 Query Classification

The analysis of queries in the catalogue shows that queries check constraints of program
domains, abstract data structures and program objects. The following classification groups

100

gueries according to semantic intention. Queries belonging to different groups may have
different creation times during a program’s lifecycle and different goals. This section discusses
the query categories indicated in the last column of Table 15 to give programmers a framework
for query creation, use, and maintenance. Differences between query classes provide an
opportunity for debugger customization.

Domain specific queries (DJhe queries in this class check domain specific constraints, rules
and invariants. Since the constraints checked by queries belong to the problem domain, they
have to be satisfied independently of the program implementation of the problem domain. In
other words, any program implementing a certain domain has to satisfy its restrictions. Domain
constraints usually are identified in the program design stage, and consequently queries would
be constructed at the same stage. Ideally, a debugger could automatically generate queries from
the program design in a modeling language [66]. Domain queries would constitute a part of
program design and would be used and verified during the program implementation.

Violation of domain specific queries indicates a design error and informs the programmer that
some functionality of the application domain is implemented incorrectly or not implemented at
all. For example, in a VLSI design program, a “true” input to an “or” gate makes the gate’s
output permanently true. Though a naively implemented program may not check this constraint
and may allow such connections, such a configuration is a domain error.

Domain specific queries also include visualization queries that illustrate the program execution
at the domain level. Results of these queries are similar to the results obtained from the program
visualization systems.

Abstract data structure queries (Aome queries check properties of abstract data structures
[11][131] such as stacks, hash tables, trees, and so on. These queries are not domain queries,
because the data structures can hold data of any domain. These queries are also different from
the programming construct queries, because they check the constraints of well-defined abstract
data structures. For example, a query about a binary tree may find the number of its nodes that
have only one child. On the other hand, programming construct queries usually span different
data structures. Abstract data structure queries can usually be expressed as class invariants and
could be packaged with the class that implements an ADT. However, the queries that provide
information rather than detect violations are best answered by dynamic queries. For example,
monitoring B+ trees using queries may indicate whether this data structure is efficient for the
underlying problem.

Program construct queries (PProgram construct queries verify object relationships that are
related to the program implementation and not directly to the problem domain. Such queries
verify and visualize groups of objects that have to conform to some constraints because of the
lower level of program design and implementation. For example, in a graphical user interface
implementation, every window object has a parent window, and this window references its
children widgets through thedget_collection collection (section 5.2.2). Such construct is not

101

required by the domain, but it is used in the design and implementation, so it must be verified.
It is also not an abstract data structure constraint because the object relationship does not form
a clearly defined abstract data type. Sometimes queries have qualities of both programming
construct queries and domain queries. Program construct queries are posed during the detailed
program design and implementation stages. Design patterns [68], when used in programs,
enforce program level constraints. Similarly to the design patterns, queries having similar basic
structure can be summarized into query patterns (Table 16). Specifying and understanding
widely used query patterns can allow developers of query-based debuggers to implement
efficient algorithms for common queries. For example, developers could use the configuration
of query pattern 1 to keep track of all elements already belonging to collections and to prohibit
assignments of such elements to other collections. Such pattern specific implementation
technigues would make query reevaluation less expensive.

Query Description

1. collection a b; element c. Element must belong to a single collection.
a.contains(c) && b.contains(c)

2. collection a b; element c. Element must belong to both collections at
a.contains(c) && ! b.contains(c) the same time.

3. collection a b. a.size = b.size Two collections must have the same size.
object a b. a.field == b.field && a'= b Objects of a class must have unique fie|d.

5. object a b. a.field == b && b.field2 I=a Objects must mutually reference each

other.

6. objectab. a.field == b.field && b.field2 !=a | Object must reference another object that
has the same value in a certain field.

7. objectab c. a.field ==b && b.field2 ==c¢ Monitor a chain of references usually with
selection constraints on objects. Mostly
used as a static-query program understand-
ing tool.

Table 16: Query patterns

Although programming construct queries are difficult to check by conventional means and
usually require specialized testing code, they can be easily checked using a dynamic query-
based debugger.

To summarize, classification of queries gives insight in use of queries during different stages of
a project lifecycle. The identification of query patterns promises potential speed benefits using
guery pattern specific optimizations.

5.4 Query Analysis and Classification Conclusions

The analysis of queries presented above indicates that 73 out of 91 queries can be handled by
the current dynamic debugger implementation. Being aware of the query model and the
debugger implementation may have precluded the author from posing more queries that cannot

102

be handled by the debugger. An important area that is not supported by the prototype is handling
of collections (16 queries) and system classes (1 query, not counting system class collections).
System class instrumentation can be done by using a load-time adaptation method different
from class-loader based instrumentation (section 4.3.6.2). Handling of collections presents a
more complicated challenge discussed in section 6.

Though 57 out of 91 queries are join queries, this observation may be biased by the effort of the
author to come up with complicated queries. Another observation is that the queries rarely
involve more than one or two joins. Perhaps writing down and understanding the semantics of
more complex queries takes too much user effort. Programmers may use more complex queries
when query libraries are available or when programmers are comfortable with tools provided.

It is unclear whether extending the query model with explicit universal and existential
guantifiers would increase the tool's appeal. Without a field study it is difficult to decide
whether programmers would understand and use such quantifiers.

One more area where the tool can be easily extended is the ability to identify individual object
instances and use them as singleton domains. This would allow programmers to restrict queries
only to certain instances of classes, and would increase the tool’s efficiency. Such an extension
would be easy in an integrated debugger environment that already maps object instances to
variables or in a debugging Virtual Machine. If implemented without VM modification, the
object instances would need to be identified by using unique hash codes.

The query list strongly suggests that method invocation support is necessary in any query
debugging tool (53 out of 91 queries contain method invocations). The same can be said about
dynamic queries. Most of the queries have results that change as the program executes, so static
gueries are not sufficient to detect error conditions.

5.5 Summary

Static and dynamic queries can be used to efficiently verify and monitor object relationships in
object-oriented programs. This section has presented queries covering a dozen programs from
five different domains. The classification of such queries and identification of query patterns has
allowed us to better understand the query classes. Most of the queries are supported by the
current dynamic query-based debugger. The full debugger implementation should support
system class and collection debugging because these structures are frequently used in queries.

103

104

6 Future Work and Open Problems

“I didn’t come all this way to sit out the fight!”
R. Balboa

“To survive, one must be able to adapt to
changing situations.”
Tyrannosaurus Rex

The query-based debugger model and implementation can be extended in a number of ways.
First, the query model could be extended to include projection on “columns” of the result
corresponding to the domain variables. The query model could allow computations that involve
the result objects. For example, it would be useful to write queries that calculate the average
length of certain lists. Although it is possible to do this now by iterating over the tuples in the
guery result, integrating such functionality into the query model could make such computations
easier to express and potentially more efficient. In this way, the system would no longer need to
construct and then consume the output tuples.

A second avenue for the future work is to extend the dynamic queries to handle collections and
system classes. System classes can be instrumented using a different load-time adaptation
method (section 4.3.6.2). Handling of collections presents a more complicated challenge. First,
collections are usually based on arrays, and the current implementation does not handle arrays.
Second, collection interfaces are exported through accessor methods. For such methods the
automatic change set determination may present problems. Third, collection support should be
coupled with individual instance identification in queries. Only some collections may belong to
the debugged program while most would be a part of the library code. Without filtering out
these extraneous collections, the query results may be confusing and the debugger may become
inefficient.

The rest of this chapter discusses two open problems: efficient automatic change set generation
and safe query reevaluation. Section 6.2.2 also outlines the ongoing research on distributed
guery-based debugging.

6.1 Automatic Change Sets

Though the current debugger implementation automatically determines change sets of queries
without method invocations (section 4.3.3), the general problem of automatic change set
determination is not easy to solve. The first problematic area lies with method invocations that
make it harder to determine which fields and objects affect the query result. The second problem
is reference chains that introduce additional overhead in chain splitting. This section discusses
possible solutions for both problems.

105

6.1.1 Automatic Change Sets for Method Invocations

Automatically determining a change set of the query when the query invokes methods is a
difficult problem. To determine a change set, the system needs to perform a static or dynamic
analysis of method invocations and field accesses. Such analyses would find the methods
invoked during the query evaluation and objects referenced by these methods. These objects
belong to the change set. The conservative starting point of the analysis are all objects
transitively reachable through the fields of the domain class, and through all static fields of
classes in the system. The analysis attempts to reduce this set.

The result of a static analysis that determines the methods involved in a query evaluation is
equivalent to a static program slice [185] at the end of the query expression evaluation. To
determine methods invoked, the system needs to use a type inference algorithm [6] because, in
dynamically dispatched languages, a target method depends on the receiver type. The debugger
already knows types of domain objects and their fields, allowing the system to determine the
first methods invoked. If an ideal type inference engine were available, the system would know
exactly which methods are called. Unfortunately, even the best type-inference methods require
large amounts of memory, are relatively slow, and may not be precise enough to reduce the
change set into an efficient size for monitoring purposes.

The second part of the static analysis would extract objects and fields accessed from the
executed methods and so would determine which objects to monitor. The relationship between
these objects and concrete instances of the domain class would need further identification as
discussed in section 6.1.2.

The system could also find change sets by using dynamic analysis. In this case, the debugger
would determine a change set at the time when a query is evaluated. Unlike the static analysis,
no type inference algorithm would be needed, since the system would wait to detect method
invocations until runtime. However, the system would incur a runtime overhead with each query
reevaluation.

The dynamic analysis determines the query change set by marking all objects accessed during
the evaluation. The marking can be done using a number of techniques proposed in the research
on data breakpoints and on software fault isolation [108][180][181]. One way to determine all
objects in the change set is to track all method calls. When a method is invoked, the system
would mark the receiver object. This technique may be too expensive because each method
invocation would need to be tracked. It can be improved by using code patching.

Another technique is @rtual memoryapproach. In this case all objects are placed in a read-
protected area. Control is transferred to the debugger each time one of the objects is accessed.
Then the object is marked and moved to an unprotected area. For example, while evaluating the
query:

Ticket t; Airline a. ! a.services(t.destination)

106

the system would accesigine objects AirlineDestinations objects and so on. The virtual memory
method would be faster if an efficient read trap were available. It may be possible to achieve a
greater efficiency by increasing the granularity of the change set detection. For example, if a
read-protected page is accessed, the system could mark all objects in it as belonging to a change
set. However, this approach increases the overhead of monitoring falsely shared objects.

A variation of this method is Keppefgmtch-on-trapmethod [108]. When a trap is hit the first

time, the system not only deals with the object access but also inserts patch code before the
memory access instruction. This patch code contains instructions that check the address of an
object being accessed. When this memory access instruction is executed again, the patch code
is invoked before the instruction itself. If the instruction would access an object in the protected
page, the patch code marks and moves this object without causing a trap. Then the instruction
can access the moved object without a trap. This technigue decreases the number of page faults
to one page fault per memory access instruction. This approach also saves time spent trying to
find and patch memory access instructions if the system were to use pure patching.

A system using pure code patching technique would dynamically patch all code executed
during the query evaluation. For example, memory access instructions in the seeties)
would be patched when this method is invoked during the evaluation of the airline query above.

Dynamic analysis solves the issue of identifying methods called in the constraint part of the
guery because the system either patches the methods when they are called or ignores them and
marks objects that generate read exceptions. However, dynamic analysis needs to be performed
at each query reevaluation because a change in some object may change the dynamically
determined change set. Furthermore, virtual-memory and code patching based approaches
would require Java Virtual Machine modifications, something that we would like to avoid.

Dynamic analysis could potentially be done with an acceptable efficiency. Wahbe and others
[181] have shown that the software fault isolation (both read and write) costs only 22% of
execution speed. Efficient data breakpoints implemented by the same authors [180] slow down
the execution about 30%. The slowdown should not be significantly larger in a debugger
implementation. On the negative side, dynamic analysis has to be done for each tuple evaluated
during the query execution. It would be preferable to use methods that depend on the number of
domain objects but not on the number of tuples. Techniques used in the system should have
lower penalty for accesses to already marked objects than the penalty for accesses to unmarked
objects.

To summarize, though static and dynamic analyses could be used to determine change sets for
method invocations, the viability of these approaches still needs to be investigated.

107

6.1.2 Reference Chains

Although reference chains appear in queries directly, the change sets of queries with method
invocations are even more likely to contain reference chains. Efficient handling of reference
chains is important for good debugger performance on complicated queries.

Section 4.3.3 shows the use of reference chain splitting to handle change sets of queries with
reference chains:

IntersectPtip. ip.Intersection.z <0

The Intersection field is aPoint object, and the query result depends on ialue. The query
result may change if thevalue changes, or if a new value is assigned tont#eection field.
Furthermore, theoint object referenced by thetersection field may be shared among several
domain objects. In this case, a change inrmie object can affect multiple domain objects.
Our debugger rewrites the query by splitting the chain into single-level accesses and by adding
additional domains and constraints. For example, the ray tracing query above is rewritten as:
IntersectPt ip; Point* __ Intersection.
ip.Intersection == __Intersection && __Intersection.z < 0

Another approach to handle change sets of such queries would be bmkkeprd references

from the change set objects to the domain objects. When a change set object changes, the
debugger is informed which domain objects were affected by the event. Assume that two
IntersectPt objects share the sampeint object through thdntersection field. When thez
coordinate of this point is changed, the debugger would be informed whicintévgectPt

objects are affected. However, keeping and maintaining backward references is a complicated
and potentially expensive task. Future research could calculate the overhead of backward
references and their contribution to the efficient query evaluation.

Alternatively, the system could keep references from each domain object to the change-set
objects affecting this domain object. These references are fmleatrd referencedf forward
references are used, after an event occurs, the debugger would find whether a domain object was
affected by traversing these references. If objects changed during the event are in the forward
reference set of some object, this domain object is affected by changes. This approach may be
slower than using backward references but it may consume less memory, because the change set
is usually referenced by the fields of the domain object. Such (forward) references already exist
in the program and do not need to be stored separately, while backward references have to be
stored explicitly.

6.2 Safe Reevaluation and Distributed Debugging

The problem of safe query evaluation was discussed in section 3.2.1. This section proposes
some ways to deal with a problem and introduces an extension of the query-based debugger to
the distributed setting.

108

Node OldNode TailNode
next ——1— P Next —~1— | Next ——
Original list
Node OldNode TailNode
next —f—p»{ next \ next -
NewNode
next .

List insertion
Figure 32. Inconsistent list state
6.2.1 Safe Reevaluation

Section 3.2.1 outlined the problem of safe evaluation. To recap, the queries should be
reevaluated only when queried objects are in consistent states. In other words, the expression
evaluation should succeed and provide meaningful results. At some program execution points
the query evaluation may be unsafe. For example, during an insertion of an element into the list,
the list may have an inconsistent state. In Figure 32, if the query is asked just after the program
updates thaext reference of th@ldNode but before it sets theext reference of thélewNode

to point to theTailNode, the query evaluation will be unsafe. If the debugger traverses a list, it
may crash because the refereNe@Node.next is null or it may produce an incorrect output by

using a shorter list that does not containTdiiNode.

Therefore, query results can be updated only when all abstractions involved are in a consistent
state. What are the consistent states? The program staterisistentvith respect to a query,

if either the underlying program objects are inconsistent, or if the design-level abstraction is
temporarily broken. The list example shows the situation where the inconsistency lies with
program objects. The following gas tank query illustrates a temporary design-level
inconsistency:

Molecule* m1 m2. mlx==m2.x && mly==m2.y && ml!=m2

This query finds molecule objects that erroneously occupy the same position. One way to
preserve this constraint in a program is to check whether molecules have collided and then
adjust the molecule coordinates to reflect the collision. However, such a solution would be

perceived incorrect by the debugger, because the molecules “occupy the same position” after
the collision and before the fix. The debugger should not evaluate the query in this inconsistent
region.

109

Node 1 Node 5 Node 7

next \ next next| —f— p»

Nod§6 /

next

List after the first part of the swap

Node 1 Node 5 Node 7
next \ next \ next —
Node 6 / Node 2 /
next next

List after the swap
Figure 33. Inconsistent intermediate list state

Consider another scenario—recursive sorting of a list by deletion and insertion. The system
needs to reevaluate a query involving the list being sorted. The system cannot reevaluate this
guery as soon as the execution leaves the method that changed the list, because the list’s state
may still be inconsistent at this point. Other operations on the list or operations on cooperating
objects that are on the execution stack may still be in the process of modifying the list's state—
even though the list link update is finished, the list may still be unconnected. For example, if the
list class uses the swap method to change places of two elements, the first part of the swap
method may just move one of the elements to its new place (Figure 33). The list may be
inconsistent until the second part of swap finishes.

To avoid inconsistency at the program level, the debugger could wait with the query
reevaluation until there are no domain object operations on the execution stack. Unfortunately,
this approach may cause a long delay. In the list sorting example, the program spends all its time
in the list code, making the debugger wait until the end of the execution to update the result of
the query. This is clearly unacceptable. Even if the debugger waited until all domain methods
were off the execution stack, the consistency could still be violated at the logical level. Objects
cooperating with the domain objects (multi-object transactions) could create inconsistencies.
For example, in a cellular network simulation (section 5.2.1.1), when a user contacts a cellular
base station, the simulation program needs to update both the list of cellular base-station users
and the list of the assigned channels. If the debugger waits only until the list of users is off the
execution stack, the query reevaluation will violate the transaction, because the list of assigned

110

channels is not yet updated. These scenarios show that simple strategies cannot deal with
complex consistency situations.

Another problem of dealing with inconsistent regions is that some of these regions may hide
genuine errors. Prohibiting query execution from a part of the runtime makes it more difficult
for programmers to understand the query and the program. Consequently, such region exclusion
should probably be left to a strict supervision of programmers, especially since automatic
determination of inconsistent states is probably impossible. One way to give users control over
excluding inconsistent regions is to use guarded queries. With each query users would provide
a “when” or “while” clause that could be consistently evaluated at any time. To provide such a
guarantee, the guard clause has to be a simple expression involving simple methods. The rest of
the query is evaluated only when (or while) the guard is true. Guards allow to declaratively
specify program regions where the query reevaluation is safe. Even though programmers have
to spend time writing guards, such programmer assistance seems to be reasonable when a guard
is available or easy to construct. For example, the cellular network base station should have no
active channels when it has no active users. Checking the size of the user list would be a natural
guard for queries involving the empty list.

Guards in general are as powerful as direct commands to reevaluate a query in the program text.
Such a command can be simulated using a guard by adding a flag variable to the program and
setting this flag in the place where a command would have been invoked. The guard would
check the flag and perform a query reevaluation when the flag is set. If guards are available in
the system, users can force query reevaluation at any moment of the program execution.

In addition to the transactional model, active database systems apply different methods to solve
the safe reevaluation problem. Most databases use a direct command method for triggering a
condition in the ECA (event-condition-action) model. Ariel [81] contains atomic (guarded)
regions where rules should not be fired. Similarly, Starburst [189][190][191] reevaluates rules
only at the end of operation blocks usually corresponding to transactions. These techniques
correspond to the safe evaluation methods proposed above.

6.2.2 Distributed Query-Based Debugging

The implementation of query-based debugging for distributed systems would help
programmers to debug distributed applications well known for their difficult-to-understand
semantics. However, such an implementation would have to deal with several problems. First,
the domain objects have to be collected from distributed nodes. Second, these objects have to be
in a consistent state. Methods for achieving consistency discussed in the previous section would
have to be adapted to the distributed setting. A distributed query-based debugging project is
currently under way at UCSB [114]. The debugger will be implemented on the Kan distributed
object system [100]. Consistent reevaluation points will correspond to the transaction commit
points and to the entry/exit points of user indicated methods. Work on distributed query-based

111

debugging could build on the research describing efficient view updates in distributed data
warehouses [8][197].

Another aspect of distributed debugging would be dealing with shared multi-user spaces such
as Kansas [157]. Debugging in such spaces would have to deal both with the problem of
distributed environment and with the problems of user separation and interaction.

112

7 Conclusions
“By persevering over all obstacles and
distractions, one may unfailingly arrive at his
chosen goal or destination”
C. Columbus

“Just because something doesn’'t do what you
planned it to do doesn’t mean it's useless.”
T. Edison

Understanding and debugging complex software systems is difficult. The cause-effect gap
between the time when a program error occurs and the time when it becomes apparent to the
programmer makes many program errors hard to find. This situation is further complicated by
the increasing use of large class libraries and complicated reference-linked data structures in
modern object-oriented systems. A misdirected reference that violates an abstract relationship
between objects may remain undiscovered until much later in the program’s execution.

Conventional debugging methods offer only limited help in finding such errors. Most
conventional debuggers offer only a limited low-level view of the program state and provide
little support for the exploration of large data structures. Data breakpoints and conditional
breakpoints cannot check constraints that have objects unreachable by references from the
statement containing the breakpoint.

The research in this dissertation proposes a system that allows to ask queries about the program
state, helping to check object relationships in large object-oriented programs. The current
implementation of the query-based debuégﬂmbines several novel features:

« A new approach to debugging: Instead of exploring a single object at a time, a query-based
debugger allows the programmer to quickly extract a set of interesting objects from a
potentially very large number of objects, or to check a certain property for a large number
of objects with a single query.

A flexible query model: Conceptually, a query evaluates its constraint expression for all
members of the query’s domain variables. The present model is simple to understand and
to learn, yet it allows a large range of queries to be formulated concisely.

» Good performance: Many queries are answered in one or two seconds on a midrange
workstation, thanks to a combination of fast object searching primitives, query
optimization, and incremental delivery of results. Even for longer queries that take tens of
seconds to produce all results, the first result is often available within a few seconds.

1 Available from the author as a prototype implementation in Java.

113

An extension of the static query-based debugger handles dynamic queries that update query
results whenever the program changes an object relevant to the query, helping to discover object
relationship failures as soon as they happen. This system provides the following new features:

» Dynamic queries: Not only does the debugger check object relationships, but it determines
exactly when these relationships fail in the program execution. This technique closes the
cause-effect gap between error's occurrence and its discovery.

» Implementation of monitoring queries: the debugger helps users to watch the changes in
object configurations through the program’s lifetime. This functionality can be used to
understand the program behavior.

The implementation of the dynamic query-based debugger has good performance. Selection
gueries are efficient, with a slowdown smaller than a factor of two for most queries measured.
We also measured field assignment frequencies in the SPECjvm98 suite, and showed that 95%
of all fields in these applications are assigned less than 100,000 times per second. Using these
numbers and individual evaluation time estimates, our debugger performance model predicts
that selection queries will have less than 43% overhead for 95% of all fields in the SPECjvm98
applications. Join queries are practical when domain sizes are small and queried field changes
are infrequent. Additional optimizations of join queries could possibly improve their evaluation
efficiency.

On-the-fly dynamic debugging has been implemented but currently suffers a high overhead.
Selection slowdowns range up to factor 9.5 with a median of 5.5. Further optimizations could
reduce this overhead.

We believe that query-based debugging adds a powerful tool to the programmer’s tool chest for
tackling the complex task of debugging. Our implementation of the dynamic query-based
debugger demonstrates that dynamic queries can be expressed simply and evaluated efficiently.
The debugger implementations in Self and Java show that the system can be adapted to different
programming languages and environments. We hope that future mainstream debuggers will
integrate similar functionality, simplifying the difficult task of debugging and facilitating the
development of more robust object-oriented systems.

114

8 Glossary
“It's useless to try to plan for the unexpected... by
definition!”
A. Hitchcock

“It all hinges on your definition of ‘a good
time’!”
L. Borgia

Active database.A database that can change reacting to events. Usually with event-
condition-action rules. Section 4.8.

Assertion. A conditional expression that is claimed to be true at some time during the
program’s execution. Includes class and method preconditions, postconditions, and
invariants. Section 2.1.3.

Backward reference.A reference from a change-set object to a domain object that is
affected by changes of this change-set objectf@emrd reference. Section 6.1.2.

Bytecode An instruction in the intermediate format, in particular, the format used by
Java Virtual Machine. Section 4.3.2.

Change set A set of objects and their fields that can affect the result of a query.
Section 4.3.3.

Class file An intermediate format file containing a Java class description compiled into
bytecodes. Section 4.3.2.

Class loader A program that controls the class loading process. Section 4.3.2.

Code generation (load-time or runtime) Producing a runnable code during the
program’s load-time or runtime. Section 4.3.5.2.

Conditional breakpoint. A breakpoint that stops a program when a condition at the
breakpoint insertion point evaluates to true. Section 2.1.2.

Consistent state A program execution state at which a query can be executed without
crashing the program and without producing logically incorrect results. Section 3.2.2.

Constraint. An object relationship that holds for a (part of a) program execution.
Section 2.

Data breakpoint. A breakpoint that stops a program when the program modifies a
selected variable. Section 2.3.1.

Debugger invocation frequencyThe frequency of events in the original program that
would trigger a debugger invocation, i.e., the invocation frequency for a debugger with
no overhead. Section 4.4.1.

115

Domain. A collection of objects on which a query is evaluated. Typically a class.
Section 3.2.

Dynamic query. A query that is answered while a program is running. Section 4.

Forward reference. A reference from a domain object to its change-set object. See
backward reference Section 6.1.2.

Guard. A simple expression that can be evaluated and is consistent at every program
execution point. Used to determioensistent state®f a query. Section 6.2.1.

Hash join. A join performed by hashing objects corresponding to a left-hand side of an
equality constraint into a hash table, and retrieving matches by using objects
corresponding to a right-hand side of a constraint. Section 3.3.6.

Instrumentation. Changing the source or the intermediate code of a program. Can be
done to add debugger or profiler invocations. Section 4.3.2.

Invariant . A constraint that is correct at every execution of class, method, or loop.
Section 2.1.3.

Java Virtual Machine (JVM) . SeeVirtual Machine .
Join query. A query with more than one variable. Section 3.2.

Load-time adaptation (LTA). A program change at load-time. Used for debugging,
profiling, program behavior extension. Section 4.3.6.1.

Nested-loop join A join performed by checking all combinations of domain tuples in
a nested loop. Section 3.3.4.

Query. A question about program structure satisfying the query model. Section 3.2.
Safety (of query evaluation) Evaluation of queries abnsistent statesSection 3.2.2.
Selection query A query with a single variable. Section 3.2.

Slicing. Finding a subset of program statements—a slice—that affects the value of a
certain variable or the current statement of the program. Section 2.3.2.

Soft (weak) referencesReferences that are not considered by the garbage collector
when deciding whether an object is alive. Section 4.3.4.

Static query. A query that is answered at a program breakpoint. Section 3.

Transaction. An atomic group of statements that are either all executed or not executed
at all. Section 6.2.1.

Transient failures. Failures that disappear after some period of time. Section 4.2.1.

Virtual Machine (VM) . Runtime system for running programs in an intermediate
format understood by the virtual machine. Section 4.3.

Visualization. On-screen display of program information usually changing in time.
Section 2.4.

116

9 References
“Old heroes never die; they reappear in sequels”

M. Moorcock
[1] Abiteboul, S., Hull, R., Vianu, VFoundations of Databasgaddison-Wesley, 1995.
[2] Abiteboul, S.; Kanellakis, P.C., Object identity as a query language primitive. AG89

SIGMOD International Conference on Management of PRtatland, OR, USA, 31 May-2
June 1989)SIGMOD Recorgdvol.18, (no.2), pp. 159-73, June 1989.

[3] Acharya, A., Scalability in Production System Prografis,D. ThesisComputer Science
Department, Carnegie Mellon University, November 1994.
[4] Adl-Tabatabai, A.-R., Langdale G., Lucco S., and Wahbe R., Efficient and Language-

Independent Mobile ProgramBroceedings of ACM SIGPLAN conference on Programming
Language Design and Implementation 19®#iladelphia, May 1996. Published AEM
SIGPLAN Noticesvol. 31, (no.5), pp. 127-136, May 1996.

[5] Agesen, O., Bak, L., Chambers, C., efldle Self 4.0 Programmer’s Reference Manual

[6] Agesen, O., Concrete Type Inference: Delivering Object-Oriented ApplicaBbri3. Thesis
Stanford University 1995.

[7] Agesen, O., Freund, S.N., and Mitchell, J.C. Adding Type Parameterization to the Java
LanguageProceedings of the ACM Conference on Object-Oriented Programming, Systems,
Languages and Applications OOPSLA'®ublished aSIGPLAN Notices 32(10pp. 304-

317, Atlanta, GA, October 1997.

[8] Agrawal, D., El Abbadi, A., Singh, A.K., Yurek, T., Efficient View Maintenance at Data
WarehousesProceedings of 1997 ACM SIGMOD International Conference on Management
of Datg SIGMOD Recordpp. 417-427, 1997.

[9] Agrawal, H., Horgan, J.R., Dynamic Program Slici®§cM SIGPLAN Conference on
Programming Language Design and Implementation, PLDR®@ite Plains, N.Y., pp. 246—
256, June 1990.

[10] Agrawal, R., Gehani, N.H., ODE (Object Database and Environment): The Language and the
Data Model,Proc. ACM-SIGMOD 1989 Int'l Conf. Management of Dgiages 36-45, May
1989.

[11] Aho, A.V., Hopcroft, J.E., Ullman, J.OChe Design and Analysis of Computer Algorithms
Addison-Wesley 1974.

[12] Aho, A.V,, Sethi R., Ullman J.D Compilers: Principles, Techniques and Toofsldison-
Wesley Publishing Company, 1986.

[13] Alexandrov, A., Ibel, M., Schauser, K., and Scheiman, C. Extending the Operating System at
the User Level: the Ufo Global File SysteRroceedings of the USENIX 1997 Technical
ConferenceJanuary 1997.

[14] Anderson E., Dynamic Visualization of Object Programs written in ©biective Software
Technology Ltd http://www.objectivesoft.com/, 1995.

117

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]

Anwar, E., Maugis, L., Chakravarthy, S., A New Perspective on Rule Support for Object-
Oriented Databasefroceedings of 1993 ACM SIGMOD International Conference on
Management of DataWashington, DC, USA, May 26-28, 199 GMOD Recordvol.22,
(no.2), pp. 99-108, May 1993.

Arnold, K., Gosling, J.The Java Programming Languag&ddison-Wesley Pub. Co., 1996.

Asprin R., The Myth-ing Book#Another Fine MythMyth Conceptiondit or Myth, Myth-ing
Persons Little Myth Marker M.Y.T.H. Inc. Link Myth-nomers and Im-pervectignklyth
Directions M.Y.T.H. Inc. in ActionSweet Myth-tery of LiféAce Books, 1978—1998.

Baecker, R., DiGiano, C., Marcus, A., Software Visualization for Debug@ioigymunications
of the ACM \ol. 40., No. 4, pp. 44-55, April 1997.

Banerjee, J.; Kim, W.; Kim, K.-C., Queries in object-oriented databases. In: Proceedings
Fourth International Conference on Data Engineering, Los Angeles, CA, USA, 1-5 Feb. 1988.
Washington, DC, USA: IEEE Comput. Soc. Press, pp. 31-8, 1988.

Baralis E., and Widom, J., Using Delta Relations to Optimize Condition Evaluation in Active
DatabasesProceedings of the Second International Workshop on Rules in Database Systems,
Lecture Notes in Computer Scien@85, pp. 292-308, Springer-Verlag, Berlin, September
1995.

Beeri, C., Milo, T., A Model for Active Object-Oriented Databas@cPedings of the 17th
International Conference on Very Large Data Bad®srcelona, pages 337-349, September
1991.

Beguelin, A., Dongarra, J., Geist, A., Sunderam V., Visualization and Debugging in a
Heterogeneous EnvironmelEEE Computel6(6), pp. 88—96, June 1993.

Berk E.,JLex: A Lexical Analyzer Generator for JaVh version 1.2.3,
http://www.cs.princeton.edu/~appel/modern/java/JLex/ , 1996.

Bertino, E., Guerrini, G., Extending the ODMG Object Model with Composite Objects,
Proceedings of OOPSLA9®p. 259-270, Vancouver, October 1998. PublisheSl@PLAN
Notices33(10), October 1998.

Bischofberger, W. R., Kofler, T., Schéaffer, B., Object-Oriented Programming Environments:
Requirements and Approachespftware—Concepts and Toolol. 15, No. 2, Springer-
Verlag, 1994

Blakeley, J.A.; Larson P.-A.; Tompa F. Wm.; Efficiently Updating Materialized Views.
Proceedings of the ACM SIGMOD Conference on Management of, Pata61-71,
Washington, D.C., USA, May 1986. Publisheds86MOD Record.5(2), June 1986.

Bourdoncle, F. Abstract Debugging of Higher-Order Imperative Languag¥d. SIGPLAN
Conference on Programming Language Design and Implementation, PL BI®Buerque,
N.M., pp. 46-55, June 1993.

Brant, D.A., Grose, T., Lofaso, B., Miranker, D.P., Effects of Database Size on Rule System
Performance: Five Case Studi®spceedings of the 17th International Conference on Very
Large Data BaseéVLDB), Barcelona, Spain, pp. 287—296, September 1991.

BrightWare ART*Enterprise http://www.brightware.com/products/art.html, 1999.

Bronnikov, D.,Java 1.1 grammakersion 1.03,
http://home.inreach.com/bronikov/grammars/java.html , November 1997.

118

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Brown, M.H., Exploring Algorithms Using Balsa-llEEE Compute21(5), pp. 14-36, May
1988.

Brown, M.H., Zeus: A System for Algorithm Animation and Multi-View EditiRgpceedings
of IEEE Workshop Visual Languagep. 4-9, IEEE CS Press, Los Alamitos, CA., 1991.

Brownston, L., Farrell, R., Kant, E., Martin, Nerogramming Expert Systems in OPS5: An
Introduction to Rule-Based Programmjngddison-Wesley, Reading, MA, 1985.

Buneman, O.P.; Clemons E.K., Efficiently Monitoring Relational Databas€iv
Transactions on Database Syste#(8), pp. 368-382, September 1979.

Cardelli L., Wegner P., On Understanding Types, Data Abstraction, and Polymorphisin,
Computing Surveyd/l. 17, No. 4, pp. 471-522, December 1985.

Cargill, T.A; Locanthi, B.N.; Cheap Hardware Support for Software Debugging and Profiling.
Proceedings of the Second International Conference on Architectural Support for
Programming Languages and Operating SystdPago Alto, CA, October 1987. pp. 82—-83,
ACM Press 1987.

Cattell, R.G.G., edited by,he Object Database Standard: ODMG-93, ReleasgMdtgan
Kaufmann Publishers, Inc., San Francisco, CA, 1996.

Chambers. QCecil language: specification and rationaldW-CS Technical Report 93-03-05,
1993.

Chambers, C., Ungar, D., Lee, E., An Efficient Implementation of SELF a Dynamically-Typed
Object-Oriented Language Based on Prototype®réceedings of OOPSLA'89p. 49-70,
New Orleans, LA, October 1989. Published as SIGPLAN Notices 24(10), October 1989.

Chandra, A.K., Merlin P.M., Optimal Implementation of Conjunctive Queries in Relational
Data Bases;onference Record of the Ninth Annual ACM Symposium on Theory of Computing
Boulder, Colorado, May 1977, pp 77-90, 1977.

Chang, B.-W., Ungar, D., Smith, R. B., Getting Close to Objects: Object-Focused
Programming Environmentgjsual Object Oriented ProgrammipBurnett, M., Goldberg, A.,
Lewis, T., eds., Prentice-Hall, 1995, pp. 185-198.

Cluet S., Moerkotte G., On the Complexity of Generating Optimal Left-Deep Processing Trees
with Cross Productflroceedings of theS International Conference on Database Theory
Prague, Czech Republic, volume 893 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 54-67, January 1995.

Cohen, G.A., Chase, J.S., and Kaminsky, D.L. Automatic Program Transformation with JOIE.
Proceedings of the 1998 USENIX Annual Technical SymposRe8.

Consens, M. P., Hasan M.Z., Mendelzon A.O., Debugging Distributed Programs by
Visualizing and Querying Event TraceApplications of Databases, First International
Conference ADB-94, Vadstena, Sweden, June 21-23, 1994, Proceedings in Lecture Notes in
Computer Science, Vol. 819, Springer, 1994.

Consens, M.; Mendelzon, A.; Ryman, A., Visualizing and querying software structures,
International Conference on Software Engineeriltglbourne, Australia, May 11-15, 1992,
ACM Press, IEEE Computer Science, p. 138-156, 1992.

119

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Coplien, J.O., Supporting truly object-oriented debugging of C++ programBroceedings
of the 1994 USENIX C++ Conferend8ambridge, MA, USA, 11-14 April 1994. pp. 99-108,
Berkley, CA, USA: USENIX Assoc, 1994.

Cox, K. C.; Roman G.-CExperiences with the Pavane Program Visualization Environment
Technical Report, WUCS-92-40, October 1992.

Dahl, O., and Nygaard, K., Simula: An Algol-based simulation langu2g®munications of
the ACM 9(9), pp. 671-678, September 1966.

Detlefs D., Dosser A., Memory Allocation Costs in Large C and C++ Programs, Software -
Practice and Experience, Vol. 24 (6), June 1994, pp. 524 - 542.

De Pauw, W.; Helm, R.; Kimelman, D.; Vlissides, J. Visualizing the behavior of object-
oriented systems. IRroceedings of the 8th Annual ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications, OOPSLAWa8Rington, DC, USA,

26 Sept.-1 Oct. 1993. SIGPLAN Notices, Oct. 1993, vol.28, (n0.10):326-37.

De Pauw, W.; Kimelman, D.; Vlissides, J. Modeling object-oriented program execution. In:
Proceedings of the 8th European Conference on Object-Oriented Programming, ECQOP ‘94
Bologna, Italy, 4-8 July 1994. pp. 163-82, Edited by: Tokoro, M.; Pareschi, R. Berlin,

Germany: Springer-Verlag, 1994.

De Pauw, W.; Lorenz, D.; Vlissides, J.; Wegman, M. Execution patterns in object-oriented
visualization. Proceedings of the Fourth USENIX Conference on Object-Oriented
Technologies and Systen$ante Fe, NM, USA, 27-30 April 1998, USENIX Association,
1998. pp.219-34.

De Witt, D..J., Katz, R.H., Olken, F., Shapiro, L.D., Stonebraker, M.R., Wood D.,
Implementation techniques for main memory database sysBmwrgedings of 1984 ACM
SIGMOD International Conference on Management of Dapa 1-8, May 1984.

Diaz, O., Paton, N., Gray, P., Rule Management in Object-Oriented Databases: A Uniform
Approach, Poceedings of the 17th International Conference on Very Large Data Bases
Barcelona, pages 317-326, September 1991.

Doorenbos, R.B., Production Matching for Large Learning System8&). ThesisComputer
Science Department, Carnegie Mellon University, January 1995.

Duncan, A., Holzle, U Adding Contracts to Java with Handshakechnical Report TRCS98-
32, December 1998.

Duncan, A., Holzle, U.;Load-Time Adaptation: Efficient and Non-Intrusive Language
Extension for Virtual Machine§echnical Report TRCS99-09, April 1999.

Eisenstadt, M., My Hairiest Bug War Stori€gmmunications of the ACMol. 40., No. 4, pp.
30-38, April 1997.

Eisenstadt M.,Tales of Debugging from The Front Linekechnical Report 106, Human
Cognition Research Laboratory, 1993.

Eisenstadt M., Why Hypertalk Debugging Is More Painful Than It Ought TinBe Alty, D.
Diaper and S.P. Guest (Eds.), People and Computers €dmbridge, U.K.: Cambridge
University Press, 1993.

Eisenstadt M., Price B. A., Domingue J., Software Visualization As A Pedagogical Tool:
Redressing Some ITS Fallaciésstructional Science21, pp. 335-365, 1993.

120

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

Flanagan, C., Flatt, M., Krishnamurthi, S., Weirich, S., Feilleisen, M., Catching Bugs in the
Web of Program Invariant®Rroceedings of ACM SIGPLAN conference on Programming
Language Design and Implementation 19®#iladelphia, May 1996. Published AEM
SIGPLAN Noticesvol. 31, (no.5), pp. 23—-32, May 1996.

Forgy, C.L.,OPS5 User's ManualTechnical Report CMU-CS-81-135, Computer Science
Department, Carnegie Mellon University, July 1981.

Forgy, C.L., RETE: A fast algorithm for the many pattern/many object pattern matching
problem.Artificial Intelligence No. 19, pp. 17-37, 1982.

Forgy, C.L., RAL/C and RAL/C++: Rule-based extensions to C and Basition Papers for
the OOPSLA'94 Embedded Object-Oriented Production Systems Workshop (EOCGBISgr
1994.

Fowler, M., Scott, K.UML Distilled: Applying the Standard Object Modeling Language
Addison-Wesley, 1997.

Gamma E., Design Patterns Elements of Reusable Object-Oriented Sofwtaria| Notes
of TOOLS'95 Conferenc&995.

Gamma E., Helm R., Johnson R., VlissideBdsign Patterns Elements of Reusable Object-
Oriented SoftwareAddison-Wesley, Reading, Massachusetts, 1994.

Gamma E., Weinand A., Marty R., Integration of a Programming Environment into ET++ - a
Case StudyProceedings ECOOP’8Nottingham, UK, July 10-14), pp. 283-297, S. Cook, ed.
Cambridge University Press, Cambridge, 1989.

Garey M.R., Johnson D.SComputers and Intractability A Guide to the Theory of NP-
CompletenessV.H. Freeman & Company, NY 1979, 1979.

Gehani N.H. and Jagadish H. V. Ode as an Active Database: Constraints and Triggers.
Proceedings of the 17th International Conference on Very Large Data Bzemeslona, pages
327-336, September 1991.

Gehani, N.H., Jagadish, H.V., Shmueli, O., Event Specification in an Active Object-Oriented
DatabaseProc. ACM-SIGMOD 1992 Int'| Conf. on Management of D4&@92.

Gill, S., The diagnosis of mistakes in programmes on the EDBAeedings of the Royal
Society Series A Mathematical and Physical Scier®@&(1087), pp. 538-554, Cambridge
University Press, May 1951.

Golan, M.; Hanson, D.R. Duel-a very high-level debugging language. In: USENIX
AssociationProceedings of the Winter 1993 USENIX ConfereBem Diego, CA, USA, 25-
29 Jan. 1993. Berkley, CA, USA: USENIX Assoc, 1993. p. 107-17.

Gold, E.; Rosson, M.B., Portia: an instance-centered environment for SmallziSLA ‘91.
Object-Oriented Programming Systems, Languages, and Applicalboenix, AZ, USA, 6-
11 Oct. 1991. Published &GPLAN Noticesvol.26, (no.11), pp. 62-74, November 1991.

Goldberg, A.,Smalltalk-80: The Interactive Programming Environmeftdison-Wesley,
Reading, MA, 1984.

Goldberg, A.; Robson, DSmalltalk-80: The Language and its Implementatidddison-
Wesley, Reading, MA, 1983.

Gosling, J., Joy, B., Steele, Ghe Java Language Specificatigxddison-Wesley 1996.

121

[79]

[80]
[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

Haas, P.J.; Naughton, J.F.; Seshadri, S.; Swami, A.N., Selectivity and Cost Estimation for Joins
based on Random Sampling® Annual Conference on Computational Learning Theory
Journal of Computer and System Sciendage 1996, vol.52, (n0.3):550-69.

The Haley Enterprise, RETE++ and Eclipse, http://www.haley.com, 1999.

Hanson, E.N., Rule Condition Testing and Action Execution in ARmlceedings of 1992
ACM SIGMOD International Conference on Management of Ofia49-58, June 1992.

Hart D., Kraemer E., Roman G.-C., Interactive Visual Exploration of Distributed
ComputationsProceedings of the 11th International Parallel Processing SympoSemeva,
Switzerland, pp.121-127, April 1997.

Hart D., Kraemer E., Roman G.-Cinteractive Visual Exploration of Distributed
ComputationsPre-International Parallel Processing Symposium Technical Report,1997.

Hao, M.C.; Karp, A.H.; Waheed, A.; Jazayeri, M., VIZIR: an integrated environment for
distributed program visualizatiorProceedings of the Third International Workshop on
Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, MASCOTS
‘95, pp.288-92, Durham, NC, USA, January 1995.

Henry, R. R., Whaley, K. M., Forstall B., The University of Washington lllustrating Compiler,
Proceedings of The ACM SIGPLAN’90 Conference on Programming Language Design and
ImplementationACM Press, New York, 1990, pp. 223-233.

Holzle, U.; Chambers, C., Ungar, D., Debugging Optimized Code with Dynamic
Deoptimization, Proceedings of The ACM SIGPLAN’92 Conference on Programming
Language Design and Implementati®tublished aSIGPLAN Notices 27(7ACM Press, pp.
32-43, 1992.

Holzle, U., A Fast Write Barrier for Generational Garbage Collectereceedings of
OOPSLA93 Workshop on Garbage Collectigvashington, D.C., September 1993.

Holzle, U.,Adaptive Optimization for Self: Reconciling High Performance with Exploratory
Programming Ph. D. Thesis, Sun Microsystems Laboratories Technical Report TR-95-35,
1995.

Holzle, U.; Ungar, D., Reconciling Responsiveness with Performance in Pure Object-Oriented
LanguagesACM Trans. Programming Languages and Syst&(4), pp. 355-400, 1996.

Horn, B. Constraint Patterns as a Basis for Object Oriented PrograntPnougedings of
SIGPLAN Conference on Object-Oriented Programming Systems, Languages, and
Applications, OOPSLA ‘92/ancouver, BC, Canada, 20-22 Oct. 1992, Publish&lGBLAN
Notices vol.27, (n0.10), pp. 218-233. October 1992.

Hudson, S.E.CUP Parser Generator for Jayaersion 0.10i,
http://www.cs.princeton.edu/~appel/modern/java/CUP/ , February 1999.

Hyrskykari A., Development of Program Visualization SysteZﬂ%LCzech British Symposium
of Visual Aspects of Man-Machine Systeltarch 27, 1993, Praha

Ibaraki T., Kameda T., On the Optimal Nesting for CompufihRelational Joins., 8M
Transactions on Database SysteMd. 9, No. 3, pp. 482-502, September 1984.

ILOG, ILOG Rules White Paper, http://www.ilog.com/products/rules/whitepaper.pdf, March
1997.

122

[99]

[96]

[97]

[98]

[99]
[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

loannidis Y. E., Kang Y. C., Left-deep vs. Bushy Trees: An Analysis of Strategy Spaces and Its
Implications for Query OptimizationProceedings of the ACM SIGMOD Conference on
Management of Datgp. 168-177, Denver, USA, May 1991.

loannidis Y. E., Kang Y. C.Randomized Algorithms for Optimizing Large Join Queries
Proceedings of the ACM SIGMOD Conference on Management of Data, pp. 312-321, Atlantic
City, USA, May 1990.

Jarke, M., Koch, J., Query Optimization in Database Systa@s] Computing Surveysol.
16, No. 2, pp. 111-152, June 1984.

Java'™ Platform Debugger Architecture
http://developer.java.sun.com/developer/earlyAccess/jbug/index.html, 1999.

Java™ 2 SDK Production Releaskttp://www.sun.com/solaris/, 1999.

James, JThe Kan Project—Reliable Concurrent Objedtgp://www.cs.ucsb.edu/~dsl/Kan/,
1999.

Jerding, F.J., Stasko J.Tl)sing Visualization to Foster Object-Oriented Program
Understanding Technical Report GIT-GVU-94-33, July 1994

Jerding, D.F., Stasko, J.T., Ball, Visualizing Message Patterns in Object-Oriented Program
ExecutionsTechnical Report GIT-GVU-96-15, May 1996.

Jones R., Lins R.Garbage Collection Algorithms for Automatic Dynamic Memory
ManagementWiley, 1996.

Kamkar, M., An Overview and Comparative Classification of Program Slicing Techniques,
Journal of Systems and Softwavel. 31, pp. 197—-214, July 1995.

Karaorman, M., Holzle, U.; Bruno, JGontractor: A Reflective Java Library to Support
Design By ContracfTechnical Report TRCS98-31, December 1998.

Keller, R., Holzle, U.; Binary Component AdaptatidProceedings ECOOP’98Springer
Verlag Lecture Notes on Computer Science, Brussels, Belgium, July 1998.

Keller, R., Hélzle, U.Implementing Binary Component Adaptation for Jahechnical Report
TRCS98-21, August 1998.

Keppel, D.,Fast Data BreakpointsTechnical Report UWCSE 93-04-06, University of
Washington, April 1993.

Kessler, P., Fast Breakpoints: Design and Implementé®mteedings of ACM SIGPLAN
conference on Programming Language Design and Implementa®88@, Published as
SIGPLAN Notice®5(6), pp. 78-84, ACM Press, June 1990.

Khoshafian, S. N., Copeland, G. P., Object Ideityceedings of OOPSLA'86p. 406—416,
Portland, OR, November 1986. Published as SIGPLAN Notices 21(11), November 1986.

Kimelman D., Rosenburg B., Roth T., Strata-Various: Multi-Layer Visualization of Dynamics
in Software System Behavid?yoceedings of Visualization’94p. 172-178, IEEE 1994.

Kishon, A., Hudak, P., Consel, C., Monitoring Semantics: A Formal Framework for
Specifying, Implementing, and Reasoning about Execution Moniwogeedings of ACM
SIGPLAN conference on Programming Language Design and Implemerit@fanToronto,
Ontario, Canada, June 1991, pp. 338-352, ACM Press 1991.

123

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]
[128]

[129]

Krishnamurthy, R., Boral, H., Zaniolo, C., Optimization of Nonrecursive Queries.,
Proceedings of International Conference on Very Large Data BA4d3B), pp. 128-137,
1986.

Kulkarni, S. Distributed Debugginghttp://www.cs.ucsbh.edu/~somil/thesis/proj.html, 1999.

Laffra C., Advanced Java: Idioms, Pitfalls, Styles and Programming, Tops 229-252,
Prentice Hall 1997.

Laffra C., Malhotra A., HotWire: A Visual Debugger for C+R+oceedings of the USENIX
C++ Conferencepp. 109-122, Usenix Association 1994.

Lange, D.B., Nakamura Y. Program Explorer: A Program Visualizer for Broegedings of
USENIX Conference on Object-Oriented Technologie$9539-54, June 1995.

Lange, D.B., Nakamura YObject-Oriented Program Tracing and VisualizatiolBM
Research Report, July 1995.

Lange, D.B., Nakamura Y. Interactive Visualization of Design Patterns Can Help in Framework
Understanding,Proceedings of OOPSLA'95pp. 342-357, Austin, TX October 1995.
Published as SIGPLAN Notices 30(10), October 1995.

Lange, D.B., Nakamura Y. Object-Oriented Program Tracing and Visualiza&&tt
Computervol. 30, no. 5, pp. 63-70, May 1997.

Lehman, T.J., Carey, M.J., Query Processing in Main Memory Database Management
SystemsProceedings of 1986 ACM SIGMOD International Conference on Management of
Data, pp. 239-250, May 1986.

Lencevicius, R.; Holzle, U.; Singh, A.Kdjgh-Level Debugger for Object-Oriented Programs
Unpublished report, November 1995.

Lencevicius, R.; Holzle, U.; Singh, A.K., Query-Based Debugging of Object-Oriented
ProgramsProceedings of OOPSLA'9@p. 304-317, Atlanta, GA, October 1997. Published as
SIGPLAN Notice82(10), October 1997.

Lencevicius, R.; Holzle, U.; Singh, A.K., Dynamic Query-Based Debuggirg.eedings of
the 13th European Conference on Object-Oriented Programmin@@R00P’'99), Lisbon,
Portugal, June 1999, Published_asture Notes on Computer Science 1&&inger-Verlag,
1999.

Liang, S., Bracha, G.; Dynamic Class Loading in the 4¥artual Machine Proceedings of
OOPSLA98 pp. 36-44, Vancouver, October 1998. Publishe®I&PLAN Notices33(10),
October 1998.

Lieuwen, D., Gehani, N., and Arlein R., The Ode Active Database: Trigger Semantics and
ImplementationProceedings of Data Engineeringebruary—March 1996.

Lindholm, T., Yellin, F..;The JavaM Virtual Machine Specificatigrddison-Wesley 1996.

Litman D.; Mishra A.; Patel-Schneider P.F., Modeling Dynamic Collections of Interdependent
Objects Using Path-Based Ruld3roceedings of OOPSLA'9QDp. 77-92, Atlanta, GA,
October 1997. Published 86GPLAN Notice82(10), October 1997.

Maloney J.Morphic: The Self User Interface Framewpf&un Microsystems and Stanford
University, 1995.

124

[130]

[131]
[132]
[133]

[134]
[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]
[144]

[145]
[146]

[147]

[148]

[149]

McCarthy, D. R., Dayal, U., The Architecture Of An Active Data Base Management System.
Proceedings of 1989 ACM SIGMOD International Conference on Management ¢fppata
215-224,1989.

McHugh, J.AAlgorithmic Graph TheoryRrentice-Hall 1990.
Meyer B.,Object-oriented Software Constructiqup. 111-163, Prentice-Hall, 1988.

Meyer B., Applying Design by Contra¢EEE Computervol. 25, no. 10 pp. 45-51, October
1992.

Meyer B. Eiffel: The LanguagePrentice-Hall, 1992.

Mishra, P., Eich, M. H., Join Processing in Relational Databasdd, Computing Surveys
vol. 24, No. 1, pp. 63-113, March 1992.

Mitchell, G., Dayal, U., Zdonik, S.B., Control of an Extensible Query Optimizer: A Planning-
Based ApproactRroceedings of the 19th VLDB Conferent93.

Mossenbdck, H., Films as graphical comments in the source code of prdgraresdings of
the International Conference on Technology of Object Oriented Systems and Languages,
TOOLS-23pp. 89-98, Santa Barbara, CA, USA, July-August 1997.

Myers, A.C., Bank, J.A., and Liskov, B. Parameterized Types for Bas@eedings of the 24th
ACM Symposium on Principles of Programming Languaggsuary 1997.

Nishimura, S.; Ohori, A.; Tajima, K., An equational object-oriented data model and its data-
parallel query language. IROPSLA ‘96: Eleventh Annual Conference on Object Oriented
Programming Systems Languages and Applicati®as Jose, CA, USA, 6-10 Oct. 1996).
Published a$IGPLAN Noticesvol.31, (no.10), pp. 1-17, October 1996.

Noble J., Groves L., Biddle R., Object Oriented Program Visualisation in Tarraingim,
Australian Computer JournaR7:4, November 1995.

Noble R. J., Groves L.J., Tarraingim - A Program Animation EnvironrRenteedings of the
12" New Zealand Computer ConferenBrinedin, August 14-16, 1991

Oflazer, K., Partitioning in Parallel Processing of Production Sysemi3, ThesisComputer
Science Department, Carnegie Mellon University, March 1987.

OST,Source vs. Object Level Debuggifiapjective Software Technology, White Paper, 1993.

Price B.A., Baecker, R.M., and Small, I.S. A Principled Taxonomy of Software Visualization,
Journal of Visual Languages and Computia¢g), p.211-266.

Production Systems Technologi€s?SJ, RETE |Ihttp://www.pst.com/, 1999.

Roman G.-C., Cox K.C., A Taxonomy of Program Visualization SystdpsE; Computer
26(12) pp. 11-24, December 1993.

Roman, G.-C. et al.,, Pavane: A System for Declarative Visualization of Concurrent
ComputationsJournal of Visual Languages and Computikgl. 3, No. 2, pp. 161-193, June
1992.

Roman G.-C.; Cox, K. C.; Wilcox, C.D.; Plun, J.Favane: A System for Declarative
Visualization of Concurrent Computatigriiechnical Report, WUCS-91-26, April 1991.

Sefika M., Design Conformance Management of Software Systems: An Architecture-Oriented
Approach.Ph.D. thesisUniversity of lllinois at Urbana-Champaign, July 1996.

125

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

Sefika M., Campbell R.H., An Open Visual Model For Object-Oriented Operating Systems,
Fourth International Workshop on Object Orientation In Operating Systeorsl, Sweden,
August 1995.

Sefika M., Sane A., Campbell R.H., Architecture-Oriented VisualizatioRrdoeedings of
OOPSLA96 pp. 389-405, San Jose, CA, October 1996. Published as SIGPLAN Notices
31(10), October 1996.

Sefika M., Sane A., Campbell R.H., Monitoring Compliance of a Software System With Its
High-Level Design ModelsProceedings of the B8international Conference on Software
Engineering (ICSE)March 1996.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., Price, T. G., Access Path
Selection in a Relational Database Management Sy&tmoeedings of the ACM SIGMOD
Conference on Management of Dgt@. 23-34, Boston, USA, June 1979.

Shaw, G.M.; Zdonik, S.B., A query algebra for object-oriented databasesSixiti
International Conference on Data Engineerigps Angeles, CA, USA, 5-9 Feb. 1990. pp.
154-62, Los Alamitos, CA, USA: IEEE Comput. Soc, 1990.

Shilling J.J, Stasko J.TUsing Animation to Design, Document and Trace Object-Oriented
SystemsTechnical Report GIT-GVU-92-12, 1992

Smith, R.B.; Maloney, J.; Ungar, D. The Self-4.0 user interface: manifesting a system-wide
vision of concreteness, uniformity, and flexibili@@OPSLA ‘95: Conference on Object
Oriented Programming Systems Languages and Applications. Tenth Annual Conference
Austin, TX, USA, 15-19 Oct. 1995. Publishedd&PLAN Noticesvol.30, (no.10), pp. 47-60,
October 1995.

Smith, R.B., Wolczko, M., Ungar, D., From Kanzas to Oz: Collaborative Debugging When a
Shared World Break§&ommunications of the AGMol. 40., No. 4, pp. 72-79, April 1997.

Standard Performance Evaluation Corporat8®?EC JVM98 Benchmarks
http://www.spec.org/osg/jvm98/, 1998.

Stasko, J., TANGO: A Framework and System for Algorithm AnimatiBEE Computer
23(9), pp. 27-39.

Steinbrunn, M., Moerkotte, G., Kemper, Rptimizing Join OrdersTechnical Report MIP
9307, Universitat Passau, FMI, September 1993.

Stonebraker, M., Implementation of Integrity Constraints and Views by Query Modification,
Proceedings of the 1975 ACM SIGMOD International Conference on Management pf Data
June 1975.

Swami, A., Optimization of Large Join Queries: Combining Heuristics and Combinational
TechniquesProceedings of the ACM SIGMOD Conference on Management of ipata67-
376, Portland, USA, May 1989.

Swami, A., Gupta A., Optimization of Large Join Querieceedings of the ACM SIGMOD
Conference on Management of Dgt@. 8-17, Chicago, USA, 1988.

Swami, A, lyer, B., A Polynomial Time Algorithm for Optimizing Join Querisceedings
of the IEEE Conference on Data Engineeripg. 345-354, Vienna, 1993.

126

[165]

[166]

[167]

[168]

[169]

[170]
[171]

[172]

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

Sweet, R.E., The Mesa Programming Environm&@M SIGPLAN 85 Symposium on
Language Issues in Programming EnvironmgAGM Press 1985, (ACM SIGPLAN Notices
20(7), July, 1985), pp. 216-229

Swineheart, D.C., Zellweger, P.T., Hagmann, R.B., The Structure of @G&MISIGPLAN 85
Symposium on Language Issues in Programming Environm&@td Press 1985, (ACM
SIGPLAN Notices 20(7), July, 1985), pp. 230-244

Takahashi, S., Matsuoka, S., Miyashita, K., Hosobe, H., Yonezawa, A., Kamada, T., A
Constraint-Based Approach for Visualization and Animati@anstraints3(1): pp. 61-86,
1998.

Tekinay S., Jabbari B., Hand-over and Channel Assignment in Mobile Cellular Networks,
IEEE Communications Magazineol. 29, no. 11, November 1991, p. 42 - 46.

Tip, F., A survey of program slicing techniquésurnal of Programming Languagegol.3,
(no.3) pp. 121-89, Sept. 1995.

Ullman, J.D.Principles of Database Systenpp. 268-316, Computer Science Press 1982.

Ullman, J.D. Principles of Data and Knowledge Basssl. | - Il, Computer Science Press,
Woodland Hills, CA, 1988.

Ullman, J.D., Widom JA First Course in Database Syster®sentice Hall, Upper Saddle
River, NJ, 1997.

Ungar, D. M., Generation scavenging: A non-disruptive high-performance storage reclamation
algorithm,ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software
Development Environment®&CM Press 1984 ACM SIGPLAN Notice$9(5), May, 1987), pp.
157-167.

Ungar, D. M., Chambers, C., Chang, B.-W., Hoélzle, U., Organizing Programs Without Classes,
Lisp and Symbolic ComputatioAn International Journal, vol. 4., No. 3, 1991.

Ungar, D. M., Chambers, C., Chang, B.-W., Holzle, U., Parents are Shared Parts of Objects:
Inheritance and Encapsulation in SEL#Sp and Symbolic ComputatioAn International
Journal, vol. 4., No. 3, 1991.

Ungar, D., Lieberman, H., Fry, C., Debugging and the Experience of Immediacy,
Communications of the ACMol. 40., No. 4, pp. 38—44, April 1997.

Ungar, D., Smith, R.B., Self: The Power of SimplicRypceedings of OOPSLA'8pp. 227-
243, Orlando, FL, October 1987. Published as SIGPLAN Notices 22(12), October 1987.

Vion-Dury J.-Y., Santana M., Virtual Images: Interactive Visualization of Distributed Object-
Oriented System$)OPSLA'94 ACM Press 1994, pp. 65-84, 1994.

Wahbe R., Efficient Data BreakpoinBroceedings of the Fifth International Conference on
Architectural Support for Programming Languages and Operating Systoason, MA,
October 1992. pp. 200-212, ACM Press 1992.

Wahbe R., Lucco S., Graham S.L., Practical Data Breakpoints: Design and Implementation.
Proceedings of ACM SIGPLAN conference on Programming Language Design and
Implementatior1993, Albuquerque, June 1993. ACM Press 1993.

Wahbe R., Lucco S., Anderson, T.E., Graham S.L., Efficient Software-Based Fault Isolation.
Proceedings of the Symposium on Operating System Prin&@@&s

127

[182]

[183]

[184]

[185]

[186]

[187]

[188]
[189]

[190]

[191]

[192]

[193]

[194]

[195]
[196]

[197]

Walker, R.J., Murphy, G.C., Freeman-Benson, B., Wright, D., Swanson, D., Isaak, J.,
Visualizing Dynamic Software System Information through High-level Modrets;eedings

of OOPSLA'98 pp. 271-283, Vancouver, October 1998. Publishe®I&PLAN Notices
33(10), October 1998.

Weinand, A.; Gamma, E. ET++-a portable, homogenous class library and application
framework. In:Computer Science Research at UBILAB, Strategy and Projects. Proceedings of
the UBILAB Conference ‘9QZurich, Switzerland, 1994. pp. 66-92. Edited by: Bischofberger,
W.R.; Frei, H.-P. Konstanz, Switzerland: Universitatsverlag Konstanz, 1994.

Weiser, M., Program slicing. 1Bth International Conference on Software Engineer®gn
Diego, CA, USA, 9-12 March 1981. New York, NY, USA, pp. 439-49, IEEE, 1981.

Weiser, M., Program SlicingEEE Transactions of Software Engineerivgl. SE-10, No. 4,
pp. 352-357, July 1984,

Weiser, M., Programmers Use Slices When Debug@iogymunications of the AGMol. 25,
No. 7, pp. 446452, July 1982.

Welch I. and Stroud R., Dalang—A Reflective Java ExtenBiat. of Workshop on Reflective
Programming in C++ and JavaUTCCP Report 98-4, Center for Computational Physics,
University of Tsukuba, Japan, ISSN 1344-3135, October 1998.

West, A. Animating C++ Programs, Objective Software Technology, White Paper, 1993.

Widom, J., Cochrane R.J., and Lindsay B. Implementing Set-Oriented Production Rules as an
Extension to Starburd®roceedings of the Seventeenth International Conference on Very Large
Data Basespp. 275—-285, Barcelona, Spain, September 1991.

Widom J. and Finkelstein S.J. Set-Oriented Production Rules in Relational Database Systems.
Proceedings of the ACM SIGMOD International Conference on Management qf @pata
259-270, Atlantic City, New Jersey, May 1990.

Widom J. The Starburst Active Database Rule SysteEE Transactions on Knowledge and
Data Engineering8(4), pp. 583-595, August 1996.

Wilson, P.R., Uniprocessor Garbage Collection Technigeex;eeedings of International
Workshop on Memory Management IWMMs®@ Malo, France, 17-19 Sept. 1992, Edited by:
Bekkers, Y.; Cohen, J. Berlin, Germany: Springer-Verlag, p. 1-42, 1992.

Wilson, P.R.; Moher, T.G. Demonic Memory for Process Histo#&3M SIGPLAN ‘89
Conference on Programming Language Design and Implement&astiand, OR, USA, 21-
23 June 1989, Published 8K5GPLAN Noticesvol.24, (no.7), pp. 330-343, July 1989.

Wong, E., Youssefi, K., Decomposition - A Strategy for Query Procegsiiig. Transactions
on Database Systemgl. 1., No. 3, pp. 223-241, September 1976.

xDuel http://www.math.tau.ac.il/~frangy¢urrently inaccessiblel999.

Zeller A., Lutkehaus D. DDD—A Free Graphical Front-End for UNIX Debuggs@M
SIGPLAN Noticesvol. 31, No. 1, pp. 22-28, January 1996.

Zhuge, Y., Garcia-Molina, H., Hammer, J., and Widom, J., View Maintenance in a
Warehousing Environment. 198&M SIGMOD International Conference on Management of
Data, 1995.SIGMOD Recorgvol. 24, pp. 316-327, 1997.

128

Appendix A Generalized Graph Matching

“Meanwhile, back at reality...”
G. Lucas

“If you're too busy to help your friends, you're
too busy!”
L. lacocca

Generalized Pattern Matching problem

The Generalized Pattern Matching problem is defined as follows:

INSTANCE: Two arbitrary directed graplid andH in which each vertex is labeled with an
element of the sét (note that two or more vertices may have the same label) and every edge is
labeled with an element of the $dhote that all the outgoing edges of a single vertex have a
unique label, but the outgoing edges of different vertices may have the same label).

QUESTION: Doess occur inH, i.e., is it possible to delete edges and vertices Hdmsuch
a way that the resulting graph is identicald®

Theorem 1The GPM problem is NP-Complete.

Proof: The GPM problem is in NP: a nondeterministic algorithm can guess the edges to be
deleted from graphl to get a graph identical 8 and then the algorithm can check that the
guess was correct in time polynomial with respect to the number of edges and vefices in

We now show that 3-SAT polynomially reduces to GPM.

Given an arbitrary 3-SAT proble(&,X), we construct the directed gragh®ndH as follows.
Let C consist of clauseS,, C,, ..., G, and letX consist of boolean variableg, X, ..., X,

In G there is one vertex labelég for each variable;; call thesevariable vertices. For each
cIaus_de = (>-<J-1, X2, >§3)_, wherexj1, %o, %3 are literals ovex, there are four verticeS, CjZ Gs,
Cjs with their respective names as labels; we call all vertices with l@pelsusevertices. We
also add the following edges:

(Ci.X1): (G2.%2), (G3.X3), (1, Ga), (G2, Ga), (Ga, Ga)
Pictorially the grapli constructed for claugg, is shown in Figure 34.

In H there are two verticeg and;, labeledX; for each variabl&;; we call thenvaluevertices.
For each claus@j = (le, X2, 43) there are 28 vertices:

11:Gy, 21:Gy, ..., 71:Gy,
12:Gp, 22:Gp, ..., 712:Gp,

129

@ @
\\
OO OO
Figure 34. Subgraph corresponding to claugen graphG

13:Cj3, 23:q3, 73:q3, and
14:q4, 24:q4, 74:q4.
The label of vertexnn:G; is C;;.
We also add the following directed edges:
(11:q1,§j1:xj),(12:q2, ijzzxj),(13:q3,xj3:xj),(11:q1,14:q4), (12:Gp,14:Gy), (13:G3,14:Gy),
(21:Gy, Xj1:%)),(22:G2,%i2:%),(23:G, Xj3:%),(21:G1,24:Gy), (22:G,24:Gy), (23:G3,24:Gy),
(31:q1,ijlzxj),(szzqz,sz:xj), (33:G3.%3:X)), (31:G1,34:Gy), (32:G5,34:Gy), (33:G3,34:Ga),
(41:G1.%1:%)),(42:Gg, X2:%),(43:Cg, Xj3:X)),(41:G1,44:Gy), (42:G,,44:Gy), (43:G3,44:Gy),
(51:q1,xj1:xj),(52:q2,ijzzxj), (53:G3.%3:X)), (51:G1,54:Ga), (52:G5,54:Gy), (53:G3,54:Ga),
(61:G1.%1:%)),(62: G2, %21 X)), (63:q3,§j3:Xj), (61:G1,64:Ga), (62:G,64:Gy), (63:G3,64:Gy),
(71:G1.%1:%), (72:G2.X%2:%), (73:Gz,%3:%), (71:Gy1,74:Ga), (72:Gp, 74:Gy), (73:G3,74:Ga).

All the edges of graphs andH are assumed to be labeled by a pair composed of the labels of
initial and terminal vertices. The set of all such labels is the Setl contains elementS,;,

ooy Gt C12r s Gz 130 oes Gz Cras ooor G Xao Xou eoes %o

The construction above is used to show that even if the @aphipartite and each vertex of
it has no more than two outgoing edges, the problem still remains NP-complete. The
construction can be simplified to prove the theorem for general graphs.

We claim that the 3-SAT probleC, X) has a solution if and only if the instance of GPM
constructed from it is satisfiable.

Assume that the instance of the 3-SAT problgnX) has a solution. Then there exists a
selection of eithex; or x; for eachi = 1..n such that all the clauses are satisfied. That means that
for each claus€; there is a triplet of value vertices which satisfies it as a part of the solution.
Moreover this triplet will correspond to one of the seven sextuplets in theld@@pmtroduced
above. So for each clauk we can select a set of four clause vertices corresponding to the

130

triplet satisfying the clause. It is clear that the graph induced by these vertices together with the
appropriate set of value vertices forms an occurrence of @aph

Now assume that GPM has a solution. Then we have a set of clause vertices witly labels

Cmt G2 s G2 C13 - Gnz Cis -, Grgand a set of value vertices with labXls X, ...,

X, that form a grapl& in graphH. From the construction of the grapGsandH, we have a
selection of eithek; or x; for eachi = 1..n, and for eac; we have four value vertices with
labelsCiq, G, Gz, G4 that are connected between themselves and to the corresponding triplet
of value vertices. It is clear that the selectiom;isfis the solution to the corresponding 3-SAT
problem. Q.E.D.

131

132

Appendix B Detailed Data

“What am | doing here?”
Any recruit, any army

“How come | get all the hard questions?”
O. North

This appendix contains detailed data collected during the experiments. Table 17 gives the field
assignment numbers for all SPECjvm98 benchmark applications. The “Frequency” column
gives the frequency in assignments per second. The “Total” column gives a total number of
fields across all programs that fall into a given assignment frequency range. The next seven
columns give the total number of fields for a particular benchmark that fall into a given
assignment frequency range. The last column expresses the total number as percentage of all
fields. E.g. 209 fields or 19.22% are assigned less than 0.1 times per second. 3 fields of
compress, 92 fields ofess, etc., have less than 0.1 assignment frequency.

The second section of the table gives the numbers for finer frequency ranges. Finally, the last
section of the table provides the data in cumulative form. For example, it shows that 519 fields
or 47.74% are assigned less than 10 times per second, though the first part shows that only
12.23% of the fields are assigned between one and ten times a second.

;’.}. Total %‘ Jess Db Javac MPEG Jack Ray % of all
L o
0.1 209 3 92 13 0 79 2 20 19.22
1 177 28 16 1 44 29 29 30 16.28
10| 133 2 29 1 66 0 34 1 12.28
100 159 5 21 0 98 2 2(13 14.62
1K 178 0 11 4 130 15 17 1 16.37
10K 119 0 1 0 74 18 12 14 10.94
100K 87 2 15 0 30 25 9 @ 8.00
M 21 4 2 0 6 6 0 3 1.93
2M 4 4 0 0 0 0 0 0 0.36

Table 17. Field assignment frequency in SPECjvm98 applications

133

3 3
S o
qg; Total %‘ Jess Db Javac MPEG Jack Ray % of all
L o
0.1 209 3 92 13 a 79 2 20 19.22
0.5 115 14 15 1 32 29 1 28 10.57
1 62 14 1 0 12 0 28 1 5.70
5 94 2 19 1 44 0 28 @ 8.64
10 39 0 10 0 22 0 6 1 3.58
50 119 5 9 0 86 2 17 @ 10.94
100 40 0 12 0 12 a 3 13 3.6}
500 124 0 9 4 86 11 14] 11.40
1K 54 0 2 0 44 4 3 1 4.96
5K 79 0 1 0 58 2 11 7.26
10K 40 0 0 0 16 16 1 7 3.67
50K 66 2 6 0 24 20 9 9 6.07
100K 21 0 9 0 6 5 0 1 1.93
500K 17 3 2 0 6 6 0 0 1.5€
M 4 1 0 0 0 0 0 3 0.36
2M 4 4 0 0 0 0 0 0 0.36
0.1, 209 3 92 13 0 79 2 20 19.22
05| 324 17 107 14 32 108 3 43 29.80
1 386 31 108 14 44 108 31 50 35.51
5| 480 33 127 15 88 108 59 50 44.15
10| 519 33 137 15 11(108 65 31 47.74
50 | 638 38 146 15 196 110 82 51 58.69
100 | 678 38 158 15 208 110 85 64 62.37
500 | 802 38 167 19 294 121 99 64 73.78

Table 17. Field assignment frequency in SPECjvm98 applications

134

3 2

S o
qg; Total %‘ Jess Db Javac MPEG Jack Ray % of all

i o
1K 856 38 169 19 338 125 10p 65 78.74
5K 935 38 170 19 396 127 118 72 86.01
10K 975 38 170 19 417 143 114 79 89.69
50K | 1041 40 176 19 436 163 123 84 95.76
100K | 1062 40 185 19 442 168 123 85 97.70
500K | 1079 43 187 19 448 174 123 85 99.26
1M | 1083 44 187 19 448 174 123 88 99.63
2M | 1087 48 187 19 448 174 123 88 100

Table 17. Field assignment frequency in SPECjvm98 applications

Table 18 shows the breakdown of the query overhead and the overhead itself. The overhead is
given in the rightmost column as a ratio of execution time with a query enabled to the execution
time of the original program. The queries are numbered in the same order as they appear in
Table 5in section 4.4.1. The loading overhead is the difference between the time it takes to load
and instrument classes using a custom class loader, and the time it takes to load a program
during normal execution. The garbage collection time is the difference between the time spent
for garbage collection in the queried program and the GC time in the original program. The first
evaluation time is the time it takes to evaluate the query for the first time. The evaluation time
is the time spent evaluating the query. This component does not include the first evaluation time.
The first evaluation time and the evaluation time together compose the total evaluation time. For
example, 3.1% of query 14 overhead is spent on instrumentation, 34.27% on garbage collection,

3.26% in the first evaluation, and 59.35% in subsequent reevaluations. The overhead of query
14 was 3.42.

c c ©
* | D S| 8 S
> = — = -
& T | ec |28 S £
3 o LG © Q
o - $ | o o
1| 44.09| 45.75 0 10.14 1.02
2| 7095 2331 0 5.7 1.10
3| 85.63] 8.54 0 5.82 1.24

Table 18. Breakdown of query overhead

135

® | 2 8| & | §
5| § ec E£5 3 | 3
& | S g g 3
o L
4| 13.05| 1.04 0 85.89 1.18
5 8.80| 1.49 0 89.7¢ 1.2y
6 6.38| 0.68 0 92.97 1.37
7 0.49| 0.01 0 99.48 5.82
8| 13.20| 6.02 0 80.7¢6 1.18
9| 2494 0.85 0 74.19 1.09
10 2.85 0.38 0 96.7¢ 1.83
11| 44.63| 12.87 g 42.48 1.23
12| 1056, 0.22 0 89.21 1.98
13 1.04) 144 0.9 096.55 213
14| 3.104| 34.27) 3.26 59.3b 3.42
15 0.04| 113 0.07 98.74 229.24
16 0.01] 0.92 0.01 99.0% 157.25
17 0.03| 1.17] 0.01 98.7 77.21
18 193, 0.21 0 97.8 6.35
19 0.71) 128 111 96.88 227.51
20 0.17| 032 0.27 99.22 930.06

Table 18. Breakdown of query overhead

Tables 19-21 give more detailed data on various aspects of query evaluation. Table 19 lists the
total program execution time, the original program execution time, the query overhead time, the
program execution time with loading overhead only (no query evaluation), the loading overhead
itself, the garbage collection overhead, and the first query overhead. All times are given in
milliseconds. The last two columns give the number of debugger invocations and the time to
evaluate a single query.{,uae) iN Microseconds.

136

g oAl 5E 5 2§ 35 °C 2% S| Temwae
& S 3 £2 | 33 3 2
1 58526| 57324 1202 57854 530 550 |0
2| 16356 14786 1570 15900 1114 366 O 420000 3.73
3| 26760 21471 5289 26000 4529 452 |0 3794911 139
4| 59596| 50406 9190 51606 1200 9 |0 65616330 0.14
5| 64042 50406 13636 51606 1200 204 O 65616330 0.20
6| 69191 50406 18785 51606 1200 129 |0 65616330 0.28
7| 293699 50406 243293 51606 1200 42 |0 65616330 3.70
8| 59495 50406 9089 51606 1200 548 |0 47052800 0.19
O| 55216 50406 4810 51606 1200 41 |0 9861615 048
10| 92450 50406 42044 51606 1200 160 | O 9861615 4.26
11| 20023 16971 3952 18735 1764 509 |0 13381240 0.29
12| 33665 16971 16694 18735 1764 37 |0 39264920 0.42
13| 122186 57324 64862 58000 676 939 620 82543 785.79
14| 50672 14786 35886 15900 1114 12300 1171 631000 56.87
15| 3890531 16971 3873560 18735 1764 44040 2088 7088454 546.46
16 | 7926776) 50406 7876370 51606 1200 73000 621 131232660 60.01
17 | 3892187 50406 3841781 51606 1200 45000 720 75477945 50.89
18| 15116 2380 12736 2626 246 28 |0 100000000 0.12
19| 57107 251 56856 655 404 730 635 10000000 5.68
20| 233446) 251 233195 655 404 753 648 10000000 23.31

Table 19. Execution times, overhead times, and invocation frequency

Table 20 lists the results of two experiments. The first three columns give the program execution
times and overheads when custom selection code was not generated. For example, query 4 ran
68.5 times slower than the original program and 57.93 times slower than the optimized query.
The three columns on the right side of the table give the results of queries executed with the

137

same value test disabled. For example, query 13 runs 3.43 times slower than the original

program and 61% slower than the optimized query.

No No
QUerY | coloctions | rafioto | rafioto | change | Shange | change
time original | optimized | test time original | optimized

1 60443 1.05 1.03 58082 1.01 0.99
2 21993 1.48 1.34

3 257305 11.98 9.61 26684 1.24 0.99
4 3452858 68.50 57.93

5 3239434 64.26 50.58

6 3270410 64.88 47.26

7 3509850 69.63 11.95

8 2197827 43.60 36.94

9 531086 10.53 9.61

10 561512 11.13 6.07

11 359111 21.16 17.16 20680 1.21 0.98
12 1032903 60.86 30.68 39200 2.30 1.16
13 197089 3.43 1.61
14

15 3985049 234.81 1.02
16

17

18 4646048 1952.12 307.35

19

20

Table 20. Results for evaluations with no fast selections and no change tests

Table 21 shows results of evaluating queries without incremental reevaluation. The first three
columns indicate the program execution times and overheads without incremental reevaluation.
For example, query 2 ran 613 times slower than the original program and 554 times slower than
the optimized query. The four columns on the right side of the table give the results of queries

138

that ran so long that we stopped query reevaluation after the first 100,000 evaluations and
estimated the total overhead. The first two columns give the time it took to execute the program
for 100,000 query evaluations and the estimated full execution time. The last two columns show
the overheads. For example, query 3 has estimated overhead of 7135 over the original program

and 5725 over the optimized query.

L
Noni Noni é % Non Noni Noni
Query | Non | iaioto | raioto | S | MCremental oo | radoto
original | optimized E Q time original | optimized
S8
-
1 67932 1.18 1.16
2 9064124 613.02 554.17 5756038 24128044 1631.81 1475.18
3 4057943| 153201990 7135.29 5725.03
4 86822 23945244 475.04 401.79
5 86750 23898004 474.11 373.16
6 95443 29602032 587.277 427.83
7 89726 25850744 512.85 88.01
8 79799 13880634 275.37 233.30
9 68838 1868098 37.06 33.83
10 70319 2014149 39.95 21.78
11 1345266) 177759312 10474.29 8495/88
12 786181 302046662 17797.81 897212
13 1258899 21.96 10.30
14 4636672 29178886 1973.41 575.83
15 2986276| 210494790 12403.20 5410
16 115974| 86097036 1708.07 10.86
17 96914 35153688 697.41 9.03
18 12407634, 5213.29 820.82

Table 21. Non-incremental evaluation results

139

5
ég Non
Noninc Noninc o . Noninc Noninc
QL;#ery incrlzr?lr;:ntal ratio to ratio to %g 'rgglimg[‘etgl ratio to ratio to
original | optimized £@® ; original | optimized
c XY time
oo
Z3
19 374151| 1490.64 6.55
20 1406216| 5602.4% 6.02

Table 21. Non-incremental evaluation results

Table 22 gives the predicted query overhead as a function of update frequency. For example, the
predicted overhead of a low-cost selection query on a field updated 500,000 times per second is
6.5%; the predicted overhead of a high-cost query with the same frequency is a factor of 3.13.

Frequency Low cost High cost
0.1 | 1.000000013 1.000000426
0.5 | 1.000000065 1.00000213

1| 1.00000013 1.00000426
5 | 1.00000065 1.0000213
10 | 1.0000013 1.0000426
50 | 1.0000065 1.000213
100 | 1.000013 1.000426
500 | 1.000065 1.00213
1000 | 1.00013 1.00426
5000 | 1.00065 1.0213
10K | 1.0013 1.0426
50K | 1.0065 1.213
100K | 1.013 1.426
500K | 1.065 3.13
iM | 1.13 5.26
2M | 1.26 9.52

Table 22. Predicted slowdown

140

	Query-Based Debugging
	UNIVERSITY OF CALIFORNIA Santa Barbara A dissertat...
	Doctor of Philosophy in Computer Science
	by Raimondas Lencevicius
	Technical Report TRCS 99–27 Committee in charge:
	Professor Urs Hölzle, co-chair Professor Ambuj Kum...
	The dissertation of Raimondas Lencevicius is appro...
	___________________ Professor Teofilo Gonzalez
	___________________ Professor Martin Rinard
	___________________ Professor Jianwen Su
	___________________ Professor Ambuj Kumar Singh, c...
	___________________ Professor Urs Hölzle, co-chair...

	June 4, 1999 Copyright by Raimondas Lencevicius 19...
	Acknowledgments
	Vita
	Personalia
	Education
	Experience
	Publications

	Abstract
	Table of Contents
	List of Figures
	List of Tables

	1 Introduction
	1.1� Problem Statement and Motivation
	Figure�1.�� Error in javac AST

	1.2� Contributions
	1.3� Overview

	2 Debugging—Background and Related Work
	Figure�2.�� Error in GUI program
	Figure�3.�� Error in javac AST
	2.1� Control Flow Debugging
	2.1.1� Breakpoints and Single Stepping
	2.1.2� Conditional Breakpoints
	2.1.3� Language Constructs
	2.1.4� Breakpoints and Testing Code
	2.1.5� Method Call Animation

	2.2� Data Observation
	2.2.1� Memory Inspection
	2.2.2� Data Structure Display Tools
	2.2.3� Data Filtering and Summary Tools

	2.3� Mixed Constructs
	2.3.1� Data Breakpoints
	2.3.2� Program Slicing

	2.4� Program Visualization Systems
	2.5� Summary

	3 Static Query-Based Debugging
	3.1� Introduction
	3.2� Query Model
	3.2.1� Assumptions
	Figure�4.�� Inconsistent list state

	3.2.2� Discussion
	3.2.3� Examples
	3.2.3.1� The Self Graphical User Interface
	Figure�5.�� Self morphs

	3.2.3.2� Understanding the Cecil Compiler

	3.3� Implementation
	Figure�6.�� Query-based debugger GUI
	3.3.1� General Structure of the System
	Figure�7.�� Overview of the query-based debugger
	Figure�8.�� Query evaluation pseudo-code
	Figure�9.�� Data structures of the intermediate fo...

	3.3.2� Enumerating All Objects in a Domain
	3.3.3� Overview of Query Execution
	Figure�10.�� Overview of query execution

	3.3.4� Join Ordering
	Figure�11.�� Left-deep join

	3.3.5� Maximum-Selectivity Heuristic
	3.3.6� Hash Joins
	Figure�12.�� Hash join

	3.3.7� Incremental Delivery
	Figure�13.�� Incremental delivery pipeline

	3.3.8� Related Work

	3.4� Experimental Results
	3.4.1� Benchmark Queries
	Table 1: Sample queries with their input and outpu...

	3.4.2� Execution Time
	Figure�14. Query execution times

	3.4.3� Join Ordering
	Figure�15. Completion time depending on join order...

	16
	17
	18
	Table 2: Completion time depending on join orderin...
	3.4.4� Incremental Delivery
	3.4.5� Hash Joins

	7
	8
	9
	13
	15
	16
	18
	Table 3: Slowdown of nested queries vs. hash queri...

	7
	8
	9
	13
	15
	16
	18
	Table 4: Response time (time to first result)
	3.5� Related work
	3.6� Summary

	4 Dynamic Query-Based Debugger
	4.1� Introduction
	Figure�16.�� Error in javac AST

	4.2� Query Model and Examples
	4.2.1� Ideal Gas Tank Example
	Figure�17.�� Error in molecule simulation

	4.3� Implementation
	Figure�18.�� Data-flow diagram of dynamic query-ba...
	4.3.1� General Structure of the System
	4.3.2� Java Program Instrumentation
	Figure�19.�� Java program instrumentation

	4.3.3� Change Monitoring
	4.3.4� Domain Collection Maintenance
	4.3.5� Overview of Query Execution
	Figure�20.�� Control flow of query execution
	4.3.5.1� Incremental Reevaluation
	Figure�21.�� Incremental query evaluation

	4.3.5.2� Custom Code Generation for Selection Quer...
	Figure�22.�� Selection evaluation using custom cod...

	4.3.6� Related Work
	4.3.6.1� Runtime Information Gathering Techniques
	4.3.6.2� Load-Time Code Instrumentation
	Figure�23.�� Modifying a VM to implement LTA.
	Figure�24.�� Performing LTA with a custom class lo...
	Figure�25.�� Implementing LTA by intercepting syst...
	Figure�26.�� Implementing LTA using dynamic linkin...

	4.3.7� Dynamic Query Debugger Implementations for ...

	4.4� Experimental Results
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. ������z.x == z1.x &...
	14. Lexer l; Token t. ������l.token == t && t.type...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1.����� th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�5.�� Benchmark queries
	4.4.1� Benchmark Queries
	1. Compress
	2. Jess
	3. Ray tracer
	4. Decaf
	5. Ideal gas tank
	Table�6.�� Application sizes and execution times

	4.4.2� Execution Time
	Figure�27.�� Program slowdown (queries 15–20 not s...
	Figure�28.�� Breakdown of query overhead as a perc...
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. ������z.x == z1.x &...
	14. Lexer l; Token t. �����l.token == t && t.type ...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1. �����th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�7.�� Overhead of non-incremental evaluation

	4.4.3� Optimizations
	4.4.3.1� Incremental Reevaluation
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Test5 z.���� z.x < 0
	Table�8.�� Benefit of custom selection code (selec...

	4.4.3.2� Custom Generated Selection Code
	4.4.3.3� Same Value Assignment Test
	1. Molecule1 z. �����z.x > 350
	2. spec.benchmarks._202_jess.jess.Token z. �����z....
	3. spec.benchmarks._205_raytrace.Point p. �����p.x...
	4. spec.benchmarks._205_raytrace.Point p. �����p.f...
	5. Molecule1 z; Molecule2 z1. ����z.x == z1.x && z...
	6. spec.benchmarks._205_raytrace.Point p; ������sp...
	Table�9.�� Unnecessary assignment test optimizatio...

	4.5� Performance Model
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. �����z.x == z1.x &&...
	14. Lexer l; Token t. �����l.token == t && t.type ...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1. �����th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�10.�� Frequencies and individual evaluation ...
	4.5.1� Debugger Invocation Frequency
	Figure�29.�� Field assignment frequency in SPECjvm...
	Figure�30.�� Predicted slowdown
	1. Compress
	2. Jess
	3. Db
	4. Javac
	5. Mpegaudio
	6. Jack
	7. Ray tracer
	8. Decaf
	9. Ideal gas tank
	10. Microbenchmark
	Table�11.�� Maximum field assignment frequencies

	4.6� Queries with Changing Results
	1. Molecule1 z. ����z.x < 200
	2. Id x. �����x.type == 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Compressor z. ���...
	5. spec.benchmarks._201_compress.Compressor z. ���...
	6. Molecule1 z; Molecule2 z1. �����z.x < z1.x && z...
	7. Lexer l; Token t. �����l.token == t && t.type =...
	8. spec.benchmarks._205_raytrace.Point p; ����spec...
	9. spec.benchmarks._201_compress.Compressor z; ���...
	10. spec.benchmarks._201_compress.Input_Buffer z; ...
	11. Test5 z. ����z.x % 2 == 0
	Table�12.�� Benchmark queries with non-empty resul...

	4.7� On-the-fly Debugging
	Figure�31.�� On-the-fly debugging instrumentation
	4.7.1� Alternative Implementations
	1. Compress
	2. Jess
	3. Db
	4. Javac
	5. Mpegaudio
	6. Jack
	7. Ray tracer
	8. Decaf
	9. Ideal gas tank
	10. Microbenchmark
	Table�13.�� On-the-fly debugging overhead

	4.7.2� Experimental Results
	1. Molecule1 z. �����z.x > 350
	2. Id x. �����x.type < 0
	3. spec.benchmarks._202_jess.jess.Token z. �����z....
	4. spec.benchmarks._201_compress.Output_Buffer z. ...
	5. spec.benchmarks._201_compress.Output_Buffer z. ...
	6. spec.benchmarks._201_compress.Output_Buffer z. ...
	7. spec.benchmarks._201_compress.Output_Buffer z. ...
	8. spec.benchmarks._201_compress.Compressor z. ���...
	9. spec.benchmarks._201_compress.Compressor z. ���...
	10. spec.benchmarks._201_compress.Compressor z. ��...
	11. spec.benchmarks._205_raytrace.Point p. �����p....
	12. spec.benchmarks._205_raytrace.Point p. �����p....
	13. Molecule1 z; Molecule2 z1. ������z.x == z1.x &...
	14. Lexer l; Token t. ������l.token == t && t.type...
	15. spec.benchmarks._205_raytrace.Point p; ������s...
	16. spec.benchmarks._201_compress.Input_Buffer z; ...
	17. spec.benchmarks._201_compress.Compressor z; ��...
	18. Test5 z.���� z.x < 0
	19. TestHash5 th; TestHash1 th1.����� th.i == th1....
	20. TestHash5 th; TestHash1 th1. �����th.i < th1.i...
	Table�14.�� On-the-fly query overhead

	4.8� Related Work
	4.9� Summary

	5 Query Analysis and Classification
	5.1� Introduction
	5.2� Queries in Software Systems
	5.2.1� Networks
	5.2.1.1� Simulation of a Cellular Communication Ne...
	5.2.1.2� Token-Based Network

	5.2.2� Graphical User Interfaces
	5.2.2.1� The Self Graphical User Interface
	5.2.2.2� Graphical Object Properties
	5.2.2.3� SPECjvm98 Ray Tracer

	5.2.3� Programming Systems
	5.2.3.1� Self Virtual Machine
	5.2.3.2� Understanding the Cecil Compiler
	5.2.3.3� Javac Compiler
	5.2.3.4� Decaf Compiler
	5.2.3.5� Jess Expert System

	5.2.4� Games and Simulations
	5.2.4.1� Tic-Tac-Toe
	5.2.4.2� Chess
	5.2.4.3� Ideal Gas Simulation

	5.2.5� Resource Management Systems
	5.2.5.1� Views and Users
	5.2.5.2� Room Scheduling System
	5.2.5.3� Process and Resource Simulation
	5.2.5.4� Airline Plane Routing Service

	5.2.6� Miscellaneous Programs
	5.2.6.1� VLSI Layout Programs
	5.2.6.2� Java Animator
	5.2.6.3� SPECjvm98 Compress

	5.2.7� Query Summary
	Table 15: Query examples

	5.3� Query Classification
	Table 16: Query patterns

	5.4� Query Analysis and Classification Conclusions...
	5.5� Summary

	6 Future Work and Open Problems
	6.1� Automatic Change Sets
	6.1.1� Automatic Change Sets for Method Invocation...
	6.1.2� Reference Chains

	6.2� Safe Reevaluation and Distributed Debugging
	6.2.1� Safe Reevaluation
	Figure�32.�� Inconsistent list state
	Figure�33.�� Inconsistent intermediate list state

	6.2.2� Distributed Query-Based Debugging

	7 Conclusions
	8 Glossary
	9 References
	[1] Abiteboul, S., Hull, R., Vianu, V., Foundation...
	[2] Abiteboul, S.; Kanellakis, P.C., Object identi...
	[3] Acharya, A., Scalability in Production System ...
	[4] Adl-Tabatabai, A.-R., Langdale G., Lucco S., a...
	[5] Agesen, O., Bak, L., Chambers, C., et al. The ...
	[6] Agesen, O., Concrete Type Inference: Deliverin...
	[7] Agesen, O., Freund, S.N., and Mitchell, J.C. A...
	[8] Agrawal, D., El Abbadi, A., Singh, A.K., Yurek...
	[9] Agrawal, H., Horgan, J.R., Dynamic Program Sli...
	[10] Agrawal, R., Gehani, N.H., ODE (Object Databa...
	[11] Aho, A.V., Hopcroft, J.E., Ullman, J.D. The D...
	[12] Aho, A.V., Sethi R., Ullman J.D., Compilers: ...
	[13] Alexandrov, A., Ibel, M., Schauser, K., and S...
	[14] Anderson E., Dynamic Visualization of Object ...
	[15] Anwar, E., Maugis, L., Chakravarthy, S., A Ne...
	[16] Arnold, K., Gosling, J., The Java Programming...
	[17] Asprin R., The Myth-ing Books: Another Fine M...
	[18] Baecker, R., DiGiano, C., Marcus, A., Softwar...
	[19] Banerjee, J.; Kim, W.; Kim, K.-C., Queries in...
	[20] Baralis E., and Widom, J., Using Delta Relati...
	[21] Beeri, C., Milo, T., A Model for Active Objec...
	[22] Beguelin, A., Dongarra, J., Geist, A., Sunder...
	[23] Berk E., JLex: A Lexical Analyzer Generator f...
	[24] Bertino, E., Guerrini, G., Extending the ODMG...
	[25] Bischofberger, W. R., Kofler, T., Schäffer, B...
	[26] Blakeley, J.A.; Larson P.-A.; Tompa F. Wm.; E...
	[27] Bourdoncle, F. Abstract Debugging of Higher-O...
	[28] Brant, D.A., Grose, T., Lofaso, B., Miranker,...
	[29] BrightWare, ART*Enterprise, http://www.bright...
	[30] Bronnikov, D., Java 1.1 grammar, version 1.03...
	[31] Brown, M.H., Exploring Algorithms Using Balsa...
	[32] Brown, M.H., Zeus: A System for Algorithm Ani...
	[33] Brownston, L., Farrell, R., Kant, E., Martin,...
	[34] Buneman, O.P.; Clemons E.K., Efficiently Moni...
	[35] Cardelli L., Wegner P., On Understanding Type...
	[36] Cargill, T.A; Locanthi, B.N.; Cheap Hardware ...
	[37] Cattell, R.G.G., edited by, The Object Databa...
	[38] Chambers. C. Cecil language: specification an...
	[39] Chambers, C., Ungar, D., Lee, E., An Efficien...
	[40] Chandra, A.K., Merlin P.M., Optimal Implement...
	[41] Chang, B.-W., Ungar, D., Smith, R. B., Gettin...
	[42] Cluet S., Moerkotte G., On the Complexity of ...
	[43] Cohen, G.A., Chase, J.S., and Kaminsky, D.L. ...
	[44] Consens, M. P., Hasan M.Z., Mendelzon A.O., D...
	[45] Consens, M.; Mendelzon, A.; Ryman, A., Visual...
	[46] Coplien, J.O., Supporting truly object-orient...
	[47] Cox, K. C.; Roman G.-C.; Experiences with the...
	[48] Dahl, O., and Nygaard, K., Simula: An Algol-b...
	[49] Detlefs D., Dosser A., Memory Allocation Cost...
	[50] De Pauw, W.; Helm, R.; Kimelman, D.; Vlisside...
	[51] De Pauw, W.; Kimelman, D.; Vlissides, J. Mode...
	[52] De Pauw, W.; Lorenz, D.; Vlissides, J.; Wegma...
	[53] De Witt, D..J., Katz, R.H., Olken, F., Shapir...
	[54] Diaz, O., Paton, N., Gray, P., Rule Managemen...
	[55] Doorenbos, R.B., Production Matching for Larg...
	[56] Duncan, A., Hölzle, U.; Adding Contracts to J...
	[57] Duncan, A., Hölzle, U.; Load-Time Adaptation:...
	[58] Eisenstadt, M., My Hairiest Bug War Stories, ...
	[59] Eisenstadt M., Tales of Debugging from The Fr...
	[60] Eisenstadt M., Why Hypertalk Debugging Is Mor...
	[61] Eisenstadt M., Price B. A., Domingue J., Soft...
	[62] Flanagan, C., Flatt, M., Krishnamurthi, S., W...
	[63] Forgy, C.L., OPS5 User’s Manual, Technical Re...
	[64] Forgy, C.L., RETE: A fast algorithm for the m...
	[65] Forgy, C.L., RAL/C and RAL/C++: Rule-based ex...
	[66] Fowler, M., Scott, K., UML Distilled: Applyin...
	[67] Gamma E., Design Patterns Elements of Reusabl...
	[68] Gamma E., Helm R., Johnson R., Vlissides J. D...
	[69] Gamma E., Weinand A., Marty R., Integration o...
	[70] Garey M.R., Johnson D.S., Computers and Intra...
	[71] Gehani N.H. and Jagadish H. V. Ode as an Acti...
	[72] Gehani, N.H., Jagadish, H.V., Shmueli, O., Ev...
	[73] Gill, S., The diagnosis of mistakes in progra...
	[74] Golan, M.; Hanson, D.R. Duel-a very high-leve...
	[75] Gold, E.; Rosson, M.B., Portia: an instance-c...
	[76] Goldberg, A., Smalltalk-80: The Interactive P...
	[77] Goldberg, A.; Robson, D.; Smalltalk-80: The L...
	[78] Gosling, J., Joy, B., Steele, G., The Java La...
	[79] Haas, P.J.; Naughton, J.F.; Seshadri, S.; Swa...
	[80] The Haley Enterprise, RETE++ and Eclipse, htt...
	[81] Hanson, E.N., Rule Condition Testing and Acti...
	[82] Hart D., Kraemer E., Roman G.-C., Interactive...
	[83] Hart D., Kraemer E., Roman G.-C., Interactive...
	[84] Hao, M.C.; Karp, A.H.; Waheed, A.; Jazayeri, ...
	[85] Henry, R. R., Whaley, K. M., Forstall B., The...
	[86] Hölzle, U.; Chambers, C., Ungar, D., Debuggin...
	[87] Hölzle, U., A Fast Write Barrier for Generati...
	[88] Hölzle, U., Adaptive Optimization for Self: R...
	[89] Hölzle, U.; Ungar, D., Reconciling Responsive...
	[90] Horn, B. Constraint Patterns as a Basis for O...
	[91] Hudson, S.E., CUP Parser Generator for Java, ...
	[92] Hyrskykari A., Development of Program Visuali...
	[93] Ibaraki T., Kameda T., On the Optimal Nesting...
	[94] ILOG, ILOG Rules, White Paper, http://www.ilo...
	[95] Ioannidis Y. E., Kang Y. C., Left-deep vs. Bu...
	[96] Ioannidis Y. E., Kang Y. C., Randomized Algor...
	[97] Jarke, M., Koch, J., Query Optimization in Da...
	[98] JavaTM Platform Debugger Architecture, http:/...
	[99] JavaTM 2 SDK Production Release, http://www.s...
	[100] James, J., The Kan Project—Reliable Concurre...
	[101] Jerding, F.J., Stasko J.T., Using Visualizat...
	[102] Jerding, D.F., Stasko, J.T., Ball, T., Visua...
	[103] Jones R., Lins R., Garbage Collection�Algori...
	[104] Kamkar, M., An Overview and Comparative Clas...
	[105] Karaorman, M., Hölzle, U.; Bruno, J.; jContr...
	[106] Keller, R., Hölzle, U.; Binary Component Ada...
	[107] Keller, R., Hölzle, U.; Implementing Binary ...
	[108] Keppel, D., Fast Data Breakpoints. Technical...
	[109] Kessler, P., Fast Breakpoints: Design and Im...
	[110] Khoshafian, S. N., Copeland, G. P., Object I...
	[111] Kimelman D., Rosenburg B., Roth T., Strata-V...
	[112] Kishon, A., Hudak, P., Consel, C., Monitorin...
	[113] Krishnamurthy, R., Boral, H., Zaniolo, C., O...
	[114] Kulkarni, S., Distributed Debugging, http://...
	[115] Laffra C., Advanced Java: Idioms, Pitfalls, ...
	[116] Laffra C., Malhotra A., HotWire: A Visual De...
	[117] Lange, D.B., Nakamura Y. Program Explorer: A...
	[118] Lange, D.B., Nakamura Y. Object-Oriented Pro...
	[119] Lange, D.B., Nakamura Y. Interactive Visuali...
	[120] Lange, D.B., Nakamura Y. Object-Oriented Pro...
	[121] Lehman, T.J., Carey, M.J., Query Processing ...
	[122] Lencevicius, R.; Hölzle, U.; Singh, A.K., Hi...
	[123] Lencevicius, R.; Hölzle, U.; Singh, A.K., Qu...
	[124] Lencevicius, R.; Hölzle, U.; Singh, A.K., Dy...
	[125] Liang, S., Bracha, G.; Dynamic Class Loading...
	[126] Lieuwen, D., Gehani, N., and Arlein R., The ...
	[127] Lindholm, T., Yellin, F., The JavaTM Virtual...
	[128] Litman D.; Mishra A.; Patel-Schneider P.F., ...
	[129] Maloney J., Morphic: The Self User Interface...
	[130] McCarthy, D. R., Dayal, U., The Architecture...
	[131] McHugh, J.A. Algorithmic Graph Theory, Prent...
	[132] Meyer B., Object-oriented Software Construct...
	[133] Meyer B., Applying Design by Contract, IEEE ...
	[134] Meyer B., Eiffel: The Language, Prentice-Hal...
	[135] Mishra, P., Eich, M. H., Join Processing in ...
	[136] Mitchell, G., Dayal, U., Zdonik, S.B., Contr...
	[137] Mössenböck, H., Films as graphical comments ...
	[138] Myers, A.C., Bank, J.A., and Liskov, B. Para...
	[139] Nishimura, S.; Ohori, A.; Tajima, K., An equ...
	[140] Noble J., Groves L., Biddle R., Object Orien...
	[141] Noble R. J., Groves L.J., Tarraingim - A Pro...
	[142] Oflazer, K., Partitioning in Parallel Proces...
	[143] OST, Source vs. Object Level Debugging, Obje...
	[144] Price B.A., Baecker, R.M., and Small, I.S. A...
	[145] Production Systems Technologies, OPSJ, RETE ...
	[146] Roman G.-C., Cox K.C., A Taxonomy of Program...
	[147] Roman, G.-C. et al., Pavane: A System for De...
	[148] Roman G.-C.; Cox, K. C.; Wilcox, C.D.; Plun,...
	[149] Sefika M., Design Conformance Management of ...
	[150] Sefika M., Campbell R.H., An Open Visual Mod...
	[151] Sefika M., Sane A., Campbell R.H., Architect...
	[152] Sefika M., Sane A., Campbell R.H., Monitorin...
	[153] Selinger, P. G., Astrahan, M. M., Chamberlin...
	[154] Shaw, G.M.; Zdonik, S.B., A query algebra fo...
	[155] Shilling J.J, Stasko J.T., Using Animation t...
	[156] Smith, R.B.; Maloney, J.; Ungar, D. The Self...
	[157] Smith, R.B., Wolczko, M., Ungar, D., From Ka...
	[158] Standard Performance Evaluation Corporation,...
	[159] Stasko, J., TANGO: A Framework and System fo...
	[160] Steinbrunn, M., Moerkotte, G., Kemper, A., O...
	[161] Stonebraker, M., Implementation of Integrity...
	[162] Swami, A., Optimization of Large Join Querie...
	[163] Swami, A., Gupta A., Optimization of Large J...
	[164] Swami, A., Iyer, B., A Polynomial Time Algor...
	[165] Sweet, R.E., The Mesa Programming Environmen...
	[166] Swineheart, D.C., Zellweger, P.T., Hagmann, ...
	[167] Takahashi, S., Matsuoka, S., Miyashita, K., ...
	[168] Tekinay S., Jabbari B., Hand-over and Channe...
	[169] Tip, F., A survey of program slicing techniq...
	[170] Ullman, J.D., Principles of Database Systems...
	[171] Ullman, J.D., Principles of Data and Knowled...
	[172] Ullman, J.D., Widom J., A First Course in Da...
	[173] Ungar, D. M., Generation scavenging: A non-d...
	[174] Ungar, D. M., Chambers, C., Chang, B.-W., Hö...
	[175] Ungar, D. M., Chambers, C., Chang, B.-W., Hö...
	[176] Ungar, D., Lieberman, H., Fry, C., Debugging...
	[177] Ungar, D., Smith, R.B., Self: The Power of S...
	[178] Vion-Dury J.-Y., Santana M., Virtual Images:...
	[179] Wahbe R., Efficient Data Breakpoints. Procee...
	[180] Wahbe R., Lucco S., Graham S.L., Practical D...
	[181] Wahbe R., Lucco S., Anderson, T.E., Graham S...
	[182] Walker, R.J., Murphy, G.C., Freeman-Benson, ...
	[183] Weinand, A.; Gamma, E. ET++-a portable, homo...
	[184] Weiser, M., Program slicing. In: 5th Interna...
	[185] Weiser, M., Program Slicing. IEEE Transactio...
	[186] Weiser, M., Programmers Use Slices When Debu...
	[187] Welch I. and Stroud R., Dalang�—�A Reflectiv...
	[188] West, A. Animating C++ Programs, Objective S...
	[189] Widom, J., Cochrane R.J., and Lindsay B. Imp...
	[190] Widom J. and Finkelstein S.J. Set-Oriented P...
	[191] Widom J. The Starburst Active Database Rule ...
	[192] Wilson, P.R., Uniprocessor Garbage Collectio...
	[193] Wilson, P.R.; Moher, T.G. Demonic Memory for...
	[194] Wong, E., Youssefi, K., Decomposition - A St...
	[195] xDuel, http://www.math.tau.ac.il/~frangy/, c...
	[196] Zeller A., Lütkehaus D. DDD—A Free Graphical...
	[197] Zhuge, Y., Garcia-Molina, H., Hammer, J., an...
	Appendix�A Generalized Graph Matching
	Figure�34.�� Subgraph corresponding to clause Cj i...

	Appendix�B Detailed Data
	Table�17.�� Field assignment frequency in SPECjvm9...
	Table�18.�� Breakdown of query overhead
	Table�19.�� Execution times, overhead times, and i...
	Table�20.�� Results for evaluations with no fast s...
	Table�21.�� Non-incremental evaluation results
	Table�22.�� Predicted slowdown

