
Applying Fixed Priority Scheduling in Practice
Raimondas Lencevicius, Alexander Ran

Nokia Research Center
5 Wayside Road, Burlington, MA 01803, USA

Raimondas.Lencevicius@nokia.com Alexander.Ran@nokia.com

Categories and Subject Descriptors
D.4.1 [Process Management]: Scheduling.D.4.8 [Performance].

General Terms
Measurement, Performance.

Keywords
Software architecture, scheduling

1. INTRODUCTION
Last year our research group was requested to study the runtime
architecture of mobile phone software in order to understand
whether some performance aspects of the phone could be
improved. We expected to improve the architecture by
systematically deriving task priorities for more effective
scheduling and improving partition into tasks.
A major part of the runtime architecture improvement work was
concerned with the scheduling of the tasks in the mobile device.
We were aware of the large body of research work in fixed-
priority scheduling area (we reference a small subset [2]-[5],[7]).
However, when we tried to apply this research in our real-world
situation, we discovered a number of problems described below.
In this paper we are primarily concerned with embedded real-time
systems such as mobile phones or personal communication
devices. Today personal communication devices are more than
voice call terminals. Mobile phones serve as platforms for a
variety of mobile applications including text and picture
messaging as well as personal information management, including
data synchronization with remote servers and desktop computers.
Mobile phones host a range of communication-centered
applications most of which have real-time constraints. During a
voice call speech data must be processed in a timely fashion to
avoid jitter. During a GPRS session lower layer packets arrive
every 10 ms. These are just few examples of system requirements
that lead to tight software performance constraints.
To improve the performance of the mobile phone software, we
concentrated on the runtime software architecture�a partition of
all software functions into concurrent units and a scheduling
policy that deliver the best possible service to the user with
available resources. The units of concurrency in most products are
operating system tasks. Thus partition of software into tasks and

allocation of functionality to tasks in the form of objects or
functions are the most important decisions in the design of the
runtime architecture [6]. In this paper, we focus on the scheduling
policy and its parameters.

2. FEATURESETS
Many of the applications on a mobile phone may be executed
concurrently but not all. In fact, it is impossible to execute all the
applications concurrently due to conflicts and contention over the
use of specific hardware resources on one hand and timeliness and
other quality constraints of the applications on the other. It is then
essential to identify the sets of applications that are concurrently
useful and investigate whether it is possible to execute these sets
concurrently on given hardware. Thus an essential concept in the
mobile device runtime architecture is a featureset. A featureset is
a set of concurrently available features. Specification of useful
featuresets for a given system is an architecturally significant
requirement. All featuresets have to be schedulable. A featureset
is defined by a collection of use cases that can overlap in time.
There are scenarios that correspond to these use cases. Objects
participating in these scenarios can be concurrently active. A
featureset determines which objects may need to be executed
concurrently. All objects are allocated to some task. The tasks that
contain objects from the same featureset have to be collectively
schedulable (Figure 1).

Featureset

ResourceScenario

ObjectEvent

concurrent

handled by

use (when held by task)

Scheduler

Task

allocate

schedule

hold

Runtime
Architecture

identify

Usecase
supported by

*

* *

*
analyze

*

* *

Mode

implemented as

determine

Figure 1. Runtime Architecture Meta Model

Tasks that do not belong to the same featureset do not have to be
collectively schedulable. If tasks that belong to the same
featureset are not schedulable, some architectural decisions
regarding allocation of objects to tasks or resource scheduling
policies must be revised.
Featuresets are a system design pattern. System designers identify
featuresets by first composing a collection of all important use
cases. Then designers identify subsets of this collection

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WOSP 04, January 14-16, 2004, Redwood City, CA.
Copyright 2004 ACM 1-58113-673-0/04/0001 ...$5.00.

containing use cases that may overlap in time. Such subsets
contain concurrently available features�featuresets. Now a
mapping between featuresets and tasks is needed. Each use case
contains one or more execution scenarios. Each scenario is
defined by one or more sequences of events that occur in the
scenario. One or more objects handle each event. Each object is
allocated to one of the concurrent tasks. Therefore, each featureset
has a mapping to a set of tasks (Figure 1).
Since each featureset maps to a set of tasks and no other tasks can
run in this featureset, it seems natural to analyze each featureset
separately when assigning task priorities. In this case, different
schedules are used for different featuresets. Such priority
assignment is called in fixed priority scheduling a mode [5][7].
Although featuresets can be implemented as modes and mapped
one-to-one to their modes, featuresets differ from modes in
several aspects. Featuresets are a practical way based on system
runtime architecture of finding a minimal set of events or tasks
that need to be concurrently schedulable. This allows to minimize
the number of tasks and therefore the number of real-time
constraints in a mode. Such mode design becomes more stable�
additional tasks and constraints can be added to the mode in the
future without breaking the schedulability. If modes were
designed as sets of concurrently schedulable tasks or events
without the consideration of the featuresets, addition of new
events in the course of system evolution would often require
mode redesign. The need for mode minimization and our
approach to minimization are not discussed in the scheduling
literature.

3. TASK MODEL FOR SCHEDULING
Whether we are scheduling tasks in a featureset or a whole
system, we need to know certain properties of tasks and resources
to create a schedule. Although there are a number of interesting
and effective approaches for dynamic scheduling of tasks [5],
most industrial real-time systems today still rely on static fixed
priority scheduling. What information is needed to assign task
priorities in fixed priority scheduling? We need to obtain task
periods, execution times, and deadlines or constraints on response
times. In addition, currently assigned task priorities need to be
known too. This is the minimal information needed for making
effective scheduling decisions. In the case of our system, we had
to produce a list of concurrent tasks and for each task to
determine its priority, period, execution time, and deadline or
constraint on response time.
We had full access to the design documentation, the source code,
and extensive execution traces produced from multiple use cases.
Unfortunately, the design documentation often does not contain
sufficient information regarding the task structure. This is mainly
because the initial task structure is often changed at later stages of
product integration and fine-tuning when the design
documentation is not actively maintained anymore. Although the
source code does contain task creation instructions and task
priorities, it is not easy to determine from the source code which
objects and functions are allocated to which task and how the
objects in a given task interact with objects in other tasks.
Therefore we mainly focused our efforts on the analysis of
execution traces, which proved to be the easiest way to obtain the
needed information.
Mobile software is instrumented to produce a variety of traces
that can be enabled or disabled at runtime. In our study we relied

on the traces produced by the operating system scheduler and
inter-task messaging. A trace record is produced every time a task
is scheduled to run.
The raw data we started with consisted of multiple files of traces
collected for different use cases. A typical use case is a file
download over a local connectivity interface, e.g., USB, during a
voice call. Another example is using a mobile phone as a cellular
modem for downloading a file from a laptop over Bluetooth and
simultaneous upload over GPRS to a remote server.
Task activity attributes like period or execution time should not
be calculated over the entire duration of the use case. This gives
incorrect information because most tasks are not active during the
entire duration of the test case. The trace file usually includes
traces from different stages of the process like connection setup
and teardown, buffering of the data downloaded over Bluetooth
before starting the GPRS upload, and so on. Thus we had to
determine the relevant segment for trace analysis. Although we
considered a variety of automatic techniques, the most efficient
way was to visually examine the utilization map and to identify
the segment of the use case that has all the relevant tasks active.

Figure 2. Finding the analysis segment from utilization map

A utilization map is a graph we produce from an execution trace
file. It shows the processor utilization by tasks as a function of
time. Each task's utilization is color-coded and the total utilization
is represented as a histogram over the time interval (Figure 2). It
is quite easy to identify the segment of the use case where all
tasks that have to be scheduled are active. We use this
information to discard the traces contained in a trace file that fall
outside of the selected segment.
Task period is defined as the interarrival interval of events
causing task�s execution. Since such event traces were not
available in our case, we approximate the task period by the time
interval between task�s successive invocations. If a task is
scheduled later than the time of its event arrival, the previous task
period will be overestimated and the next one underestimated.
The execution time of a task can be calculated as the time
between an invocation of a task and the invocation of the next
task. This approach is correct only if tasks run to completion of
their response without being preempted by higher priority tasks.
To account for preemptions we had to recognize them in the trace.
The mere fact that a higher priority task Thigh is executed right
after a lower priority task Tlow does not indicate that the lower
priority task was preempted. It is possible that the lower priority
task Tlow had completed its response before Thigh was scheduled.
To recognize the preemption, our system produced a trace record
at the end of each task�s response.
Unfortunately, we could not identify ways to discover deadlines
from analysis of execution traces. Some of the deadlines are due

Analysis segment

Time

System utilization

to protocols of interaction with other systems and thus cannot be
determined from traces in principle. In this study, we had
interviews with software designers in order to elicit the deadline
information.
Once we have extracted from the traces the observations of each
task�s parameters such as invocations and execution times, we
looked at the obtained data from the scheduling point of view.
Immediately we noticed a number of issues that are not handled
by the fixed priority scheduling methods.
In simple scheduling approaches, each task is characterized by a
single period, deadline, and execution time. Of course, it is
commonly understood that in many, possibly in most, cases the
tasks are not perfectly periodic. A typical recommendation from
scheduling literature, however, is to look at the worst case. This
means using the shortest period and the longest execution time.
Unfortunately, in all the use cases we have analyzed, such a
recommendation is not useful because none of these use cases
would be schedulable even though we knew that the system
performed fine in practice. For example, in a simple voice call
scenario, where the average processor load was lower than 30%
and the system was clearly schedulable, the worst-case execution
time in a single task was larger than its worst-case period, which
indicates that even this single task cannot be scheduled. Similarly,
Table 1 shows the extracted data of a communication task for the
use case of file transfer between a laptop and a server over USB
and GPRS. The worst-case period of the task takes 0.4 time units,
while the worst-case execution time takes 20 time units.
Table 1. Communication task execution times and periods in

file transfer over USB and GPRS
Worst case
(longest)
execution time

20 Worst case
(shortest)
period

0.4

Average
execution time

1.6 Average
period

20.5

Largest cluster
execution time

1.3 Largest cluster
period

1.6

Execution time clusters Period clusters

Time Size Time Size

1.3 4352 1.6 1479

3.1 906 4.3 657

 10.6 562

 20.6 1024

 41.9 1221

 100.9 280

4. MULTIVARIATE TASKS
The assumption that tasks have a single period and execution time
or that they are single peak statistical functions does not hold in
our data. However, it may be possible to identify a small set of
typical (�peak�) periods and execution times of a task. We called
this a multivariate task hypothesis.
To verify this hypothesis we developed a data-clustering
algorithm that identifies the presence of multiple clusters
(�peaks�) in observations of task periods and execution times. We
have applied a modified K-means algorithm with criteria for
establishing new clusters and merging not sufficiently separated

clusters. The results of cluster analysis confirmed the multivariate
task hypothesis�most of the tasks had several characteristic
periods and execution times. For example, a communication task
(Table 1) has two execution time clusters and six period clusters
in the given use case. Most of our real-time tasks could be
characterized by a small set of parameter vectors. These data also
indicated that such statistical measures as average period and
execution time are not representative of the mobile device�s task
behavior. Indeed, although the average execution time divided by
the average period represents the average processor utilization
contributed by a task, this load does not represent a reliable
schedulability measure (also noted in [4]). Since tasks have
different characteristic periods and execution times, the average
may not represent any single cluster. For example, the average
execution time of the task in Table 1 does not correspond to either
of the two large execution time clusters. This observation is
typical for other tasks as well.
We analyzed the clusters further. In many cases, it is impossible
to perform the schedulability analysis based on just the largest
execution-time and period clusters. For example, the largest
period and execution-time clusters of the task in Table 1 show
that this task would have utilized the processor at 1.3/1.6 ≈ 81%
utilization. Since the system has other tasks as well, such a high
utilization by one task indicates that the system is unschedulable.
However, as we know from experimental data, this is not the case.
So the schedulability analysis needs to take into account the
relationship between different execution time and period clusters.
With such understanding it may be possible to identify pairs of
corresponding period and execution time values. It is also
essential to determine which parameter values of one task
correspond to which parameter values of another task from the
same featureset.
What causes multiple period and execution time clusters in a
single task? If tasks were designed with runtime architecture and
schedulability in mind, a single task should be assigned only
objects handling a single event stream [1][6]. However, in real
systems, tasks often contain objects handling more than one
stream of events. These event streams may be independent and
have different periods and execution times. The observed periods
and execution times will be a complex superposition of periods
and execution times of different event streams and may not
display any characteristic period at all. In depth understanding of
tasks may allow to separate the multiple event streams and
determine periods and execution times characterizing each of
them. We found that this is difficult to achieve from the traces and
usually requires domain expert help.
Multivariate task scheduling is not fully addressed by fixed
priority scheduling methods, requiring new extensions.

5. ACTIVITIES
In our system a response to an event may involve multiple tasks
of different priority. The invocation of these tasks is deterministic
in response to an event and thus has to be seen as a single activity.
Furthermore, some responses may have multiple deadlines for
different tasks that constitute the response.
We call multitask responses to events activities. An activity may
be represented as a message sequence chart (�sequence diagram�)
of task executions connected by messages sent from one task to
other tasks. An activity starts with an external event, for example,

a timer expiration, an interrupt, or another similar event. An
activity ends when all tasks involved in the activity are finished
with their responses. In some scheduling research [2][5], parts of
activities are called subtasks and the activities themselves are
called tasks. In our context, such naming leads to confusion, since
activities are not operating system level tasks while �subtasks� are
really operating system level tasks. Therefore we use the terms
activities and tasks.
It is evident from extracted activities that phone tasks are highly
dependent on each other. An external event is handled not by just
one task, but by a number of communicating tasks. This means
that whole activities need to be considered in real-time analysis as
well as in scheduling. A single priority cannot be assigned for an
activity composed from multiple tasks. We present a few
alternative ways of dealing with this.

5.1 Priority assignment for tasks in activities
First approach is to analyze activities and to assign task priorities
for tasks in activities. Klein et al. [4] and Harbour et al. [2][3]
show how to determine the system schedulability for systems with
activities. However, we did not find any results that show an
optimal priority assignment for systems with activities.
Harbour et al. [3] suggest a heuristic of assigning priorities to
tasks in activities according to a deadline monotonic algorithm.
However, this approach is proved optimal only for a limited set of
schedules where all tasks in activities have nonascending
priorities. On the other hand, Harbour et al. [2][3] use the
activity�s canonical form, which is obtained by converting all task
priorities to a nondescending form. The conversion is done by
starting from the end of an activity and lowering priorities of any
tasks that are higher than later task priorities (detailed algorithm is
given in [2]). It is shown that the activity completion time is the
same for original and canonical forms. This seems to argue for the
use of the nondescending priority assignment for tasks in an
activity. However, no proof is given that such assignment is
�good�. We provide several new conjectures regarding such
assignment below.
Conjecture 1. Consider the simplest situation where there are no
internal deadlines for the tasks in an activity A and no tasks are
shared between activities. Conversion of activity A to a canonical
form improves schedulability of the system.
Proof. Harbour et al. proved that the activity A completion time
is the same for original and canonical forms. Since all tasks in
activity A after the conversion to a canonical form have lower or
the same priority than before conversion (see conversion
algorithm in [2]), they can interrupt or block fewer other activities
and tasks than before. Therefore other tasks and activities have
the same or shorter interruptions or blocking times and finish at
the same time or earlier improving their schedulability. QED.
Conjecture 1 shows that for every schedule in a system with
above constraints there is a better or equal schedule in which all
activities are in canonical forms. Such a schedule can be
constructed by converting each activity in turn into a canonical
form. Therefore the optimal schedule for a system with no
intermediate deadlines in activities and no tasks shared between
activities is a schedule with all activities in a canonical form.
Unfortunately this result does not hold anymore if the constraints
on the system are changed. If tasks in activities have internal
deadlines, these deadlines can be broken by the activity

conversion to a canonical form. Consider Figure 3. It shows two
activities: one consisting of task 1 and task 3 and another one
consisting of task 2. Task numbers are shown inside task
execution bars. Task 1 has execution time C1 = 2 and deadline
D1 = 2. Execution times of other two tasks are C2=4, C3=2.
Periods of activities are TA1 = 13, TA2 = 7. Task 1 satisfies internal
deadline of two time units in the original priority assignment,
where it has the highest priority of all tasks. However, task 1 fails
the deadline when the activity is converted to canonical form and
task 1 priority is lowered to the priority of task 3.

2

Task 1 fails two time unit deadline after
activity conversion to canonical form

2

1 3

Task 1 satisfies two time unit internal deadline

2

Task 2 fails activity deadline after alternative
activity conversion to canonical form

1 3

2

Time

1 3 3
0 2 4 6 8 10 12

Figure 3. Conversion of activity with internal deadlines to
canonical form

Is there an optimal priority assignment in this example such that
all activities are in canonical form? No. P1 (priority of task 1) has
to be greater than P2 for task 1 to satisfy its internal deadline D1.
Which means that P3 ≥ P1 (by canonical form) > P2. But this is the
situation at the bottom of the Figure 3, where task 2 fails the
activity deadline TA2=7. On the other hand, this task set with a
non-canonical form schedule is schedulable as shown in the top of
the Figure 3.
Conjecture 2. If tasks have internal deadlines, the optimal
schedule does not always have all activities in canonical form.
If tasks are shared between activities, but no tasks have internal
deadlines, the usefulness of conversion to a canonical form
depends on whether same priority tasks are allowed and how
same priority tasks are scheduled.
Consider Figure 4. In it C1=2, C2=2, C3=1, TA1=6, TA2=12. Task 2
is shared by both activities. In original priority assignment
P3<P1<P2. Activity 1 is in canonical form, while activity 2 is not
in canonical form. The system is schedulable. If activity 2 is
converted to a canonical form, P2 becomes equal to P3. However,
now activity 1 is not in canonical form: P2=P3<P1. Now activity 1
is converted into a canonical form and priorities become
P1=P2=P3. However, the scheduling of such a system depends
totally on the operating system scheduler implementation and in
the �bad� case (Figure 4 bottom) activity 1 fails its deadline.
Therefore, if activities have shared tasks, the conversion to the
canonical form should be used only if scheduling of tasks with the
same priority and scheduling of the same task invoked from
different activities is well understood. Systems usually are not

designed to have tasks with the same priorities because then the
internal scheduler implementation determines the processing
order of same priority tasks. For example, if two tasks of the same
priority become ready, the scheduler has to decide which one will
be executed first.

2

1

3

Activity 1 fails to satisfy deadline

Both activities satisfy deadlines

2 1 2

2 3

1 2

Time 0 2 4 6 8 10 12

Figure 4. Activities with shared tasks

1

4

2 Task 2 misses deadline,
system not schedulable

1

1

3

1

3 3 4

1

3

1

3 4

1

System schedulable

Time 0 2 4 6 8 10 12

Figure 5. Harbour et al. example

5.2 Task merging and splitting in activities
The second approach to activity scheduling is to simplify the
system first by moving all the functionality performed in an
activity into a single task. This allows assigning a single priority
to the activity and using known scheduling algorithms for the
priority assignment. However, such reallocation is not possible if
the same task�s actions are needed in different activities.
Reallocation is also impossible if tasks in an activity have internal
real-time constraints. Finally, reallocation leads to task merging,
which, as observed in [2], reduces overall system schedulability.
To repeat Harbour et al. example (Figure 5): tasks 1 and 2 are not
schedulable using optimal RMA priority assignment (P2<P1), but
are schedulable if task 2 is split into tasks 3 and 4, where task 3
keeps task�s 2 priority, but task 4 has the highest priority
(P3<P1<P4). Details of this example are covered in [2].
We look at this example from the opposite direction. If system
has tasks 1, 3, and 4 in the beginning, the system is schedulable,
but it is no longer schedulable after merging of tasks 3 and 4 that
constituted an activity. We suggest the following new conjecture.
Conjecture 3. Splitting activity into tasks increases system
schedulability. Merging tasks decreases system schedulability.
Proof. The conjecture is intuitively obvious, since task splitting
increases degrees of freedom and merging decreases degrees of
freedom. Consider two systems such that some task T is split into
tasks T1, �, Tn in the second system. The second system can
always be scheduled in the same way as the first system, by

assigning tasks T1, �, Tn the same priority P which was held by
task T. If the system does not allow equal priorities, assigning
priority series P+δ, �, P+nδ, such that no other priority P� falls
into interval [P, P+nδ] assures the same schedule for the second
system as for the first system. This shows that the system with
split tasks is always at least as schedulable as the system from
which the split was done. QED.
The above proof assumes that there is no task-switching overhead.
Task splitting increases the number of task switches, which means
that the overhead due to task switching increases too. This may
become an issue if the task-switching overhead is large.
Harbour et al. [3] proved that any system of two tasks with
deadlines equal to periods and system utilization ≤ 1 is
schedulable by splitting the longer period task into two and
assigning appropriate priorities. As far as we know, there is no
similar proof for an arbitrary number of tasks. For task sets with
deadlines shorter than periods, Harbour et al. [3] result does not
hold even for two tasks. Consider the system in Figure 5. If we
make task 1 deadline D1 equal to its execution time C1, task
splitting cannot make the system schedulable anymore. If task 2 is
not split, it misses its deadline. If task 2 is split, task 1 misses its
deadline.
It seems that people scheduling a system with activities are left in
a quandary: they can stay with activities, but not know the
optimal priority assignment, or they can merge tasks decreasing
the system schedulability. In our project, we could not simply
merge activity tasks, since tasks were invoked multiple times in
an activity and they participated in multiple activities.

6. CONCLUSIONS
Our project work on runtime architecture of mobile phone
software led us into the systematic scheduling analysis of mobile
phone tasks. We believe that the issues raised, extensions
suggested and future directions outlined can bring the fixed
priority scheduling methods to more real-world industrial projects
and contribute to good systematic scheduling practices.

7. REFERENCES
[1] H. Gomaa, “Designing Concurrent, Distributed, and Real-Time

Applications with UML”, Addison-Wesley, 2000.

[2] M.G. Harbour, M.H. Klein, J.P. Lehoczky, �Fixed Priority
Scheduling of Periodic Tasks with Varying Execution Priority,�
Proceedings of the IEEE Real-Time Systems Symposium, pp. 116-
128, Los Alamitos, CA: IEEE Computer Society Press, 1991.

[3] M.G. Harbour, M.H. Klein, J.P. Lehoczky, �Timing Analysis for
Fixed-Priority Scheduling of Hard Real-Time Systems,� IEEE
Transactions on Software Engineering, vol. 20, no. 1, pp. 13-28,
IEEE Computer Society Press, 1994.

[4] M.H. Klein, T. Ralya, B. Pollak, R. Obenza, M.G. Harbour, “A
Practitioner’s Handbook for Real-Time Analysis: Guide to Rate
Monotonic Analysis for Real-Time Systems”, Kluwer Academic
Publishers, 1993.

[5] J.W.S. Liu, “Real-Time Systems”, Prentice-Hall, 2000.

[6] A. Ran, R. Lencevicius, �Making Sense of Runtime Architecture for
Mobile Phone Software�, Proceedings of ESEC/FSE’2003.

[7] K.W. Tindell, A. Burns, A.J. Wellings, �Mode changes in priority
preemptively scheduled systems�, Proceedings of the Real-Time
Systems Symposium 1992, pp. 100-109, 1992.

