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1. INTRODUCTION  
Last year our research group was requested to study the runtime 
architecture of mobile phone software in order to understand 
whether some performance aspects of the phone could be 
improved. We expected to improve the architecture by 
systematically deriving task priorities for more effective 
scheduling and improving partition into tasks. 
A major part of the runtime architecture improvement work was 
concerned with the scheduling of the tasks in the mobile device. 
We were aware of the large body of research work in fixed-
priority scheduling area (we reference a small subset [2]-[5],[7]). 
However, when we tried to apply this research in our real-world 
situation, we discovered a number of problems described below. 
In this paper we are primarily concerned with embedded real-time 
systems such as mobile phones or personal communication 
devices. Today personal communication devices are more than 
voice call terminals. Mobile phones serve as platforms for a 
variety of mobile applications including text and picture 
messaging as well as personal information management, including 
data synchronization with remote servers and desktop computers. 
Mobile phones host a range of communication-centered 
applications most of which have real-time constraints. During a 
voice call speech data must be processed in a timely fashion to 
avoid jitter. During a GPRS session lower layer packets arrive 
every 10 ms. These are just few examples of system requirements 
that lead to tight software performance constraints. 
To improve the performance of the mobile phone software, we 
concentrated on the runtime software architecture�a partition of 
all software functions into concurrent units and a scheduling 
policy that deliver the best possible service to the user with 
available resources. The units of concurrency in most products are 
operating system tasks. Thus partition of software into tasks and 

allocation of functionality to tasks in the form of objects or 
functions are the most important decisions in the design of the 
runtime architecture [6]. In this paper, we focus on the scheduling 
policy and its parameters.  

2. FEATURESETS 
Many of the applications on a mobile phone may be executed 
concurrently but not all. In fact, it is impossible to execute all the 
applications concurrently due to conflicts and contention over the 
use of specific hardware resources on one hand and timeliness and 
other quality constraints of the applications on the other. It is then 
essential to identify the sets of applications that are concurrently 
useful and investigate whether it is possible to execute these sets 
concurrently on given hardware. Thus an essential concept in the 
mobile device runtime architecture is a featureset. A featureset is 
a set of concurrently available features. Specification of useful 
featuresets for a given system is an architecturally significant 
requirement. All featuresets have to be schedulable. A featureset 
is defined by a collection of use cases that can overlap in time. 
There are scenarios that correspond to these use cases. Objects 
participating in these scenarios can be concurrently active. A 
featureset determines which objects may need to be executed 
concurrently. All objects are allocated to some task. The tasks that 
contain objects from the same featureset have to be collectively 
schedulable (Figure 1). 
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Figure 1. Runtime Architecture Meta Model 

Tasks that do not belong to the same featureset do not have to be 
collectively schedulable. If tasks that belong to the same 
featureset are not schedulable, some architectural decisions 
regarding allocation of objects to tasks or resource scheduling 
policies must be revised. 
Featuresets are a system design pattern. System designers identify 
featuresets by first composing a collection of all important use 
cases. Then designers identify subsets of this collection 
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containing use cases that may overlap in time. Such subsets 
contain concurrently available features�featuresets. Now a 
mapping between featuresets and tasks is needed. Each use case 
contains one or more execution scenarios. Each scenario is 
defined by one or more sequences of events that occur in the 
scenario. One or more objects handle each event. Each object is 
allocated to one of the concurrent tasks. Therefore, each featureset 
has a mapping to a set of tasks (Figure 1).  
Since each featureset maps to a set of tasks and no other tasks can 
run in this featureset, it seems natural to analyze each featureset 
separately when assigning task priorities. In this case, different 
schedules are used for different featuresets. Such priority 
assignment is called in fixed priority scheduling a mode [5][7]. 
Although featuresets can be implemented as modes and mapped 
one-to-one to their modes, featuresets differ from modes in 
several aspects. Featuresets are a practical way based on system 
runtime architecture of finding a minimal set of events or tasks 
that need to be concurrently schedulable. This allows to minimize 
the number of tasks and therefore the number of real-time 
constraints in a mode. Such mode design becomes more stable�
additional tasks and constraints can be added to the mode in the 
future without breaking the schedulability. If modes were 
designed as sets of concurrently schedulable tasks or events 
without the consideration of the featuresets, addition of new 
events in the course of system evolution would often require 
mode redesign. The need for mode minimization and our 
approach to minimization are not discussed in the scheduling 
literature. 

3. TASK MODEL FOR SCHEDULING 
Whether we are scheduling tasks in a featureset or a whole 
system, we need to know certain properties of tasks and resources 
to create a schedule. Although there are a number of interesting 
and effective approaches for dynamic scheduling of tasks [5], 
most industrial real-time systems today still rely on static fixed 
priority scheduling. What information is needed to assign task 
priorities in fixed priority scheduling? We need to obtain task 
periods, execution times, and deadlines or constraints on response 
times. In addition, currently assigned task priorities need to be 
known too. This is the minimal information needed for making 
effective scheduling decisions. In the case of our system, we had 
to produce a list of concurrent tasks and for each task to 
determine its priority, period, execution time, and deadline or 
constraint on response time.  
We had full access to the design documentation, the source code, 
and extensive execution traces produced from multiple use cases. 
Unfortunately, the design documentation often does not contain 
sufficient information regarding the task structure. This is mainly 
because the initial task structure is often changed at later stages of 
product integration and fine-tuning when the design 
documentation is not actively maintained anymore. Although the 
source code does contain task creation instructions and task 
priorities, it is not easy to determine from the source code which 
objects and functions are allocated to which task and how the 
objects in a given task interact with objects in other tasks. 
Therefore we mainly focused our efforts on the analysis of 
execution traces, which proved to be the easiest way to obtain the 
needed information. 
Mobile software is instrumented to produce a variety of traces 
that can be enabled or disabled at runtime. In our study we relied 

on the traces produced by the operating system scheduler and 
inter-task messaging. A trace record is produced every time a task 
is scheduled to run. 
The raw data we started with consisted of multiple files of traces 
collected for different use cases. A typical use case is a file 
download over a local connectivity interface, e.g., USB, during a 
voice call. Another example is using a mobile phone as a cellular 
modem for downloading a file from a laptop over Bluetooth and 
simultaneous upload over GPRS to a remote server. 
Task activity attributes like period or execution time should not 
be calculated over the entire duration of the use case. This gives 
incorrect information because most tasks are not active during the 
entire duration of the test case.  The trace file usually includes 
traces from different stages of the process like connection setup 
and teardown, buffering of the data downloaded over Bluetooth 
before starting the GPRS upload, and so on. Thus we had to 
determine the relevant segment for trace analysis. Although we 
considered a variety of automatic techniques, the most efficient 
way was to visually examine the utilization map and to identify 
the segment of the use case that has all the relevant tasks active. 

  
Figure 2. Finding the analysis segment from utilization map 

A utilization map is a graph we produce from an execution trace 
file. It shows the processor utilization by tasks as a function of 
time. Each task's utilization is color-coded and the total utilization 
is represented as a histogram over the time interval (Figure 2). It 
is quite easy to identify the segment of the use case where all 
tasks that have to be scheduled are active. We use this 
information to discard the traces contained in a trace file that fall 
outside of the selected segment. 
Task period is defined as the interarrival interval of events 
causing task�s execution. Since such event traces were not 
available in our case, we approximate the task period by the time 
interval between task�s successive invocations. If a task is 
scheduled later than the time of its event arrival, the previous task 
period will be overestimated and the next one underestimated. 
The execution time of a task can be calculated as the time 
between an invocation of a task and the invocation of the next 
task. This approach is correct only if tasks run to completion of 
their response without being preempted by higher priority tasks. 
To account for preemptions we had to recognize them in the trace. 
The mere fact that a higher priority task Thigh is executed right 
after a lower priority task Tlow does not indicate that the lower 
priority task was preempted. It is possible that the lower priority 
task Tlow had completed its response before Thigh was scheduled. 
To recognize the preemption, our system produced a trace record 
at the end of each task�s response. 
Unfortunately, we could not identify ways to discover deadlines 
from analysis of execution traces. Some of the deadlines are due 
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to protocols of interaction with other systems and thus cannot be 
determined from traces in principle. In this study, we had 
interviews with software designers in order to elicit the deadline 
information. 
Once we have extracted from the traces the observations of each 
task�s parameters such as invocations and execution times, we 
looked at the obtained data from the scheduling point of view. 
Immediately we noticed a number of issues that are not handled 
by the fixed priority scheduling methods. 
In simple scheduling approaches, each task is characterized by a 
single period, deadline, and execution time. Of course, it is 
commonly understood that in many, possibly in most, cases the 
tasks are not perfectly periodic. A typical recommendation from 
scheduling literature, however, is to look at the worst case. This 
means using the shortest period and the longest execution time. 
Unfortunately, in all the use cases we have analyzed, such a 
recommendation is not useful because none of these use cases 
would be schedulable even though we knew that the system 
performed fine in practice. For example, in a simple voice call 
scenario, where the average processor load was lower than 30% 
and the system was clearly schedulable, the worst-case execution 
time in a single task was larger than its worst-case period, which 
indicates that even this single task cannot be scheduled. Similarly, 
Table 1 shows the extracted data of a communication task for the 
use case of file transfer between a laptop and a server over USB 
and GPRS. The worst-case period of the task takes 0.4 time units, 
while the worst-case execution time takes 20 time units. 
Table 1. Communication task execution times and periods in 

file transfer over USB and GPRS 
Worst case 
(longest) 
execution time 

20 Worst case 
(shortest) 
period 

0.4 

Average 
execution time 

1.6 Average 
period 

20.5 

Largest cluster 
execution time 

1.3 Largest cluster 
period 

1.6 

Execution time clusters Period clusters 

Time Size Time Size 

1.3 4352 1.6 1479 

3.1 906 4.3 657 

  10.6 562 

  20.6 1024 

  41.9 1221 

  100.9 280 

4. MULTIVARIATE TASKS 
The assumption that tasks have a single period and execution time 
or that they are single peak statistical functions does not hold in 
our data. However, it may be possible to identify a small set of 
typical (�peak�) periods and execution times of a task. We called 
this a multivariate task hypothesis. 
To verify this hypothesis we developed a data-clustering 
algorithm that identifies the presence of multiple clusters 
(�peaks�) in observations of task periods and execution times. We 
have applied a modified K-means algorithm with criteria for 
establishing new clusters and merging not sufficiently separated 

clusters. The results of cluster analysis confirmed the multivariate 
task hypothesis�most of the tasks had several characteristic 
periods and execution times. For example, a communication task 
(Table 1) has two execution time clusters and six period clusters 
in the given use case. Most of our real-time tasks could be 
characterized by a small set of parameter vectors. These data also 
indicated that such statistical measures as average period and 
execution time are not representative of the mobile device�s task 
behavior. Indeed, although the average execution time divided by 
the average period represents the average processor utilization 
contributed by a task, this load does not represent a reliable 
schedulability measure (also noted in [4]). Since tasks have 
different characteristic periods and execution times, the average 
may not represent any single cluster. For example, the average 
execution time of the task in Table 1 does not correspond to either 
of the two large execution time clusters. This observation is 
typical for other tasks as well. 
We analyzed the clusters further. In many cases, it is impossible 
to perform the schedulability analysis based on just the largest 
execution-time and period clusters. For example, the largest 
period and execution-time clusters of the task in Table 1 show 
that this task would have utilized the processor at 1.3/1.6 ≈ 81% 
utilization. Since the system has other tasks as well, such a high 
utilization by one task indicates that the system is unschedulable. 
However, as we know from experimental data, this is not the case. 
So the schedulability analysis needs to take into account the 
relationship between different execution time and period clusters. 
With such understanding it may be possible to identify pairs of 
corresponding period and execution time values. It is also 
essential to determine which parameter values of one task 
correspond to which parameter values of another task from the 
same featureset. 
What causes multiple period and execution time clusters in a 
single task? If tasks were designed with runtime architecture and 
schedulability in mind, a single task should be assigned only 
objects handling a single event stream [1][6]. However, in real 
systems, tasks often contain objects handling more than one 
stream of events. These event streams may be independent and 
have different periods and execution times. The observed periods 
and execution times will be a complex superposition of periods 
and execution times of different event streams and may not 
display any characteristic period at all. In depth understanding of 
tasks may allow to separate the multiple event streams and 
determine periods and execution times characterizing each of 
them. We found that this is difficult to achieve from the traces and 
usually requires domain expert help. 
Multivariate task scheduling is not fully addressed by fixed 
priority scheduling methods, requiring new extensions. 

5. ACTIVITIES 
In our system a response to an event may involve multiple tasks 
of different priority. The invocation of these tasks is deterministic 
in response to an event and thus has to be seen as a single activity. 
Furthermore, some responses may have multiple deadlines for 
different tasks that constitute the response. 
We call multitask responses to events activities. An activity may 
be represented as a message sequence chart (�sequence diagram�) 
of task executions connected by messages sent from one task to 
other tasks. An activity starts with an external event, for example, 



a timer expiration, an interrupt, or another similar event. An 
activity ends when all tasks involved in the activity are finished 
with their responses. In some scheduling research [2][5], parts of 
activities are called subtasks and the activities themselves are 
called tasks. In our context, such naming leads to confusion, since 
activities are not operating system level tasks while �subtasks� are 
really operating system level tasks. Therefore we use the terms 
activities and tasks. 
It is evident from extracted activities that phone tasks are highly 
dependent on each other. An external event is handled not by just 
one task, but by a number of communicating tasks. This means 
that whole activities need to be considered in real-time analysis as 
well as in scheduling. A single priority cannot be assigned for an 
activity composed from multiple tasks. We present a few 
alternative ways of dealing with this. 

5.1 Priority assignment for tasks in activities 
First approach is to analyze activities and to assign task priorities 
for tasks in activities. Klein et al. [4] and Harbour et al. [2][3] 
show how to determine the system schedulability for systems with 
activities. However, we did not find any results that show an 
optimal priority assignment for systems with activities. 
Harbour et al. [3] suggest a heuristic of assigning priorities to 
tasks in activities according to a deadline monotonic algorithm. 
However, this approach is proved optimal only for a limited set of 
schedules where all tasks in activities have nonascending 
priorities. On the other hand, Harbour et al. [2][3] use the 
activity�s canonical form, which is obtained by converting all task 
priorities to a nondescending form. The conversion is done by 
starting from the end of an activity and lowering priorities of any 
tasks that are higher than later task priorities (detailed algorithm is 
given in [2]). It is shown that the activity completion time is the 
same for original and canonical forms. This seems to argue for the 
use of the nondescending priority assignment for tasks in an 
activity. However, no proof is given that such assignment is 
�good�. We provide several new conjectures regarding such 
assignment below. 
Conjecture 1. Consider the simplest situation where there are no 
internal deadlines for the tasks in an activity A and no tasks are 
shared between activities. Conversion of activity A to a canonical 
form improves schedulability of the system. 
Proof. Harbour et al. proved that the activity A completion time 
is the same for original and canonical forms. Since all tasks in 
activity A after the conversion to a canonical form have lower or 
the same priority than before conversion (see conversion 
algorithm in [2]), they can interrupt or block fewer other activities 
and tasks than before. Therefore other tasks and activities have 
the same or shorter interruptions or blocking times and finish at 
the same time or earlier improving their schedulability. QED. 
Conjecture 1 shows that for every schedule in a system with 
above constraints there is a better or equal schedule in which all 
activities are in canonical forms. Such a schedule can be 
constructed by converting each activity in turn into a canonical 
form. Therefore the optimal schedule for a system with no 
intermediate deadlines in activities and no tasks shared between 
activities is a schedule with all activities in a canonical form. 
Unfortunately this result does not hold anymore if the constraints 
on the system are changed. If tasks in activities have internal 
deadlines, these deadlines can be broken by the activity 

conversion to a canonical form. Consider Figure 3. It shows two 
activities: one consisting of task 1 and task 3 and another one 
consisting of task 2. Task numbers are shown inside task 
execution bars. Task 1 has execution time C1 = 2 and deadline 
D1 = 2. Execution times of other two tasks are C2=4, C3=2. 
Periods of activities are TA1 = 13, TA2 = 7. Task 1 satisfies internal 
deadline of two time units in the original priority assignment, 
where it has the highest priority of all tasks. However, task 1 fails 
the deadline when the activity is converted to canonical form and 
task 1 priority is lowered to the priority of task 3. 
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Figure 3. Conversion of activity with internal deadlines to 
canonical form 

Is there an optimal priority assignment in this example such that 
all activities are in canonical form? No. P1 (priority of task 1) has 
to be greater than P2 for task 1 to satisfy its internal deadline D1. 
Which means that P3 ≥ P1 (by canonical form) > P2. But this is the 
situation at the bottom of the Figure 3, where task 2 fails the 
activity deadline TA2=7. On the other hand, this task set with a 
non-canonical form schedule is schedulable as shown in the top of 
the Figure 3. 
Conjecture 2. If tasks have internal deadlines, the optimal 
schedule does not always have all activities in canonical form. 
If tasks are shared between activities, but no tasks have internal 
deadlines, the usefulness of conversion to a canonical form 
depends on whether same priority tasks are allowed and how 
same priority tasks are scheduled. 
Consider Figure 4. In it C1=2, C2=2, C3=1, TA1=6, TA2=12. Task 2 
is shared by both activities. In original priority assignment 
P3<P1<P2. Activity 1 is in canonical form, while activity 2 is not 
in canonical form. The system is schedulable. If activity 2 is 
converted to a canonical form, P2 becomes equal to P3. However, 
now activity 1 is not in canonical form: P2=P3<P1. Now activity 1 
is converted into a canonical form and priorities become 
P1=P2=P3. However, the scheduling of such a system depends 
totally on the operating system scheduler implementation and in 
the �bad� case (Figure 4 bottom) activity 1 fails its deadline. 
Therefore, if activities have shared tasks, the conversion to the 
canonical form should be used only if scheduling of tasks with the 
same priority and scheduling of the same task invoked from 
different activities is well understood. Systems usually are not 



designed to have tasks with the same priorities because then the 
internal scheduler implementation determines the processing 
order of same priority tasks. For example, if two tasks of the same 
priority become ready, the scheduler has to decide which one will 
be executed first. 
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Figure 4. Activities with shared tasks 
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Figure 5. Harbour et al. example 

5.2 Task merging and splitting in activities 
The second approach to activity scheduling is to simplify the 
system first by moving all the functionality performed in an 
activity into a single task. This allows assigning a single priority 
to the activity and using known scheduling algorithms for the 
priority assignment. However, such reallocation is not possible if 
the same task�s actions are needed in different activities. 
Reallocation is also impossible if tasks in an activity have internal 
real-time constraints. Finally, reallocation leads to task merging, 
which, as observed in [2], reduces overall system schedulability. 
To repeat Harbour et al. example (Figure 5): tasks 1 and 2 are not 
schedulable using optimal RMA priority assignment (P2<P1), but 
are schedulable if task 2 is split into tasks 3 and 4, where task 3 
keeps task�s 2 priority, but task 4 has the highest priority 
(P3<P1<P4). Details of this example are covered in [2]. 
We look at this example from the opposite direction. If system 
has tasks 1, 3, and 4 in the beginning, the system is schedulable, 
but it is no longer schedulable after merging of tasks 3 and 4 that 
constituted an activity. We suggest the following new conjecture. 
Conjecture 3. Splitting activity into tasks increases system 
schedulability. Merging tasks decreases system schedulability. 
Proof. The conjecture is intuitively obvious, since task splitting 
increases degrees of freedom and merging decreases degrees of 
freedom. Consider two systems such that some task T is split into 
tasks T1, �, Tn in the second system. The second system can 
always be scheduled in the same way as the first system, by 

assigning tasks T1, �, Tn the same priority P which was held by 
task T. If the system does not allow equal priorities, assigning 
priority series P+δ, �, P+nδ, such that no other priority P� falls 
into interval [P, P+nδ] assures the same schedule for the second 
system as for the first system. This shows that the system with 
split tasks is always at least as schedulable as the system from 
which the split was done. QED. 
The above proof assumes that there is no task-switching overhead. 
Task splitting increases the number of task switches, which means 
that the overhead due to task switching increases too. This may 
become an issue if the task-switching overhead is large. 
Harbour et al. [3] proved that any system of two tasks with 
deadlines equal to periods and system utilization ≤ 1 is 
schedulable by splitting the longer period task into two and 
assigning appropriate priorities. As far as we know, there is no 
similar proof for an arbitrary number of tasks. For task sets with 
deadlines shorter than periods, Harbour et al. [3] result does not 
hold even for two tasks. Consider the system in Figure 5. If we 
make task 1 deadline D1 equal to its execution time C1, task 
splitting cannot make the system schedulable anymore. If task 2 is 
not split, it misses its deadline. If task 2 is split, task 1 misses its 
deadline.  
It seems that people scheduling a system with activities are left in 
a quandary: they can stay with activities, but not know the 
optimal priority assignment, or they can merge tasks decreasing 
the system schedulability. In our project, we could not simply 
merge activity tasks, since tasks were invoked multiple times in 
an activity and they participated in multiple activities.  

6. CONCLUSIONS 
Our project work on runtime architecture of mobile phone 
software led us into the systematic scheduling analysis of mobile 
phone tasks. We believe that the issues raised, extensions 
suggested and future directions outlined can bring the fixed 
priority scheduling methods to more real-world industrial projects 
and contribute to good systematic scheduling practices.  
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