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Dynamic Query-Based Debugging

Raimondas Lencevicius, Urs Hölzle, and Ambuj K. Singh*

Abstract. Program errors are hard to find because of the cause-effect gap
between the time when an error occurs and the time when the error becomes
apparent to the programmer. Although debugging techniques such as condi-
tional and data breakpoints help to find error causes in simple cases, they fail
to effectively bridge the cause-effect gap in many situations. Dynamic query-
based debuggers offer programmers an effective tool that provides instant
error alert by continuously checking inter-object relationships while the
debugged program is running. To speed up dynamic query evaluation, our
debugger (implemented in portable Java) uses a combination of program
instrumentation, load-time code generation, query optimization, and incre-
mental reevaluation. Experiments and a query cost model show that selection
queries are efficient in most cases, while more costly join queries are
practical when query evaluations are infrequent or query domains are small.

1 Introduction

Many program errors are hard to find because of a cause-effect gap between th
when the error occurs and the time when it becomes apparent to the programm
terminating the program or by producing incorrect results [Eis97]. The situatio
further complicated in modern object-oriented systems which use large class lib
and create complicated pointer-linked data structures. If one of these referen
incorrect and violates an abstract relationship between objects, the resulting erro
remain undiscovered until much later in the program’s execution.
For example, consider thejavac Java compiler, a part of Sun’s JDK distribution. Durin
a compilation, this compiler builds an abstract syntax tree (AST) of the comp
program. Assume that this AST is corrupted by an operation that assigns the 
expression node to the fieldright of two different parent nodes (Figure 1). The pare

nodes may be instances of any subclass ofBinaryExpression; for example, the parent
may be anAssignAddExpression object or aDivideExpression object, while the child
could be anIdentifierExpression. The compiler traverses the AST many time
performing type checks and inlining transformations. During these traversals, the 
expression will receive contradictory information from its two parents. These contra
tions may eventually become apparent as the compiler indicates errors in correc
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Figure 1. Error in javac AST

Expression 2

BinaryExpression 1

Expression 1right

BinaryExpression 2

right



tence
ally
s they

 stop
oints

 to a

ness of
 error
red by
from

eld

oints
 and
bug
e not
ch an

r use

 the
e may
 with

ary,
ends

ndi-
base
iven

 even
 or

 to
int is
itude.

e
amic
 runs,

nction-
programs or when it generates incorrect code. But even after discovering the exis
of the error, the programmer still has to determine which part of the program origin
caused the problem. How can we help programmers to find such errors as soon a
occur?
The programmer could try to use data breakpoints [WLG93], i.e., breakpoints that
the program when the value of a particular field changes. However, data breakp
(even if conditional) do not help to debug this error because they are specific
particular instance. With hundreds or even thousands ofBinaryExpression instances,
and in the presence of asynchronous events and garbage collection, the effective
data breakpoints is greatly diminished. In addition, it is hard to express the above
as a simple boolean expression. The error occurs only if the expression is sha
another parent node—a relationship difficult to observe from the other parent or 
the child itself. In other words, by looking just at the fieldright of some
BinaryExpression object we cannot determine whether this object and its new fi
value are erroneous.
A programmer could also try to use another conventional tool, conditional breakp
[Kes90]. Conditional breakpoints check a condition at a particular program location
stop the program if this condition is true. Conditional breakpoints fail to find our 
for the same reason: the condition cannot easily reference objects which ar
reachable from the scope containing the breakpoint. Yet we must find exactly su
object—theBinaryExpression containing a duplicate reference to the childExpression
object. To accomplish this task, the programmer could write custom testing code fo
by conditional breakpoints. For example, thejavac compiler could keep a list of all
BinaryExpression objects and include methods that iterate over the list and check
correctness of the AST. However, writing such code is tedious, and the testing cod
be used only once, so the effort of writing it is not easily recaptured. Finally, even
the test code at hand, the programmer still has to find all assignments to the fieldright
and place a breakpoint there; injavac, there are dozens of such statements. In summ
the tool (conditional breakpoints) provides minimal support and the programmer 
up doing all the work “by hand”.
A more effective way to check an inter-object constraint would be to combine co
tional breakpoints with a query-based debugger [LHS97]. Similar to an SQL data
query tool, a query-based debugger (QBD) finds all object tuples satisfying a g
boolean constraint expression. For example, the query

BinaryExpression* e1, e2. e1.right == e2.right && e1 != e2

would find the objects involved in the abovejavac error. The breakpoints would then
carry the condition that the above query return a non-empty result. Unfortunately,
well-optimized QBD executions would be inefficient for this task. With hundreds
thousands ofBinaryExpression objects, each query becomes quite expensive
evaluate, and since the query is reevaluated every time a conditional breakpo
reached, the program being debugged may slow down by several orders of magn
(We will substantiate this claim in section 4.3.1.)
We propose a new solution,dynamic query-based debugging, which can overcom
these problems. In addition to implementing the regular QBD query model, a dyn
query-based debugger continually updates the results of queries as the program
and can stop the program as soon as the query result changes. To provide this fu
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ality, the debugger finds all places where the debugged program changes a fie
could affect the result of the query and uses sophisticated algorithms to increme
reevaluate the query. Therefore, a dynamic query-based debugger finds thejavac AST
bug as soon as the faulty assignment occurs, and it does so with minimal progra
effort and low program execution overhead.
We have implemented such a dynamic query-based debugger for Java. Our proto
portable (written in 100% pure Java), and surprisingly efficient. Experiments with l
programs from the SPECjvm98 suite [SPEC98] show that selection queries are
efficient for most programs, with a slowdown of less than a factor of two in most ex
iments. Through measurements, we determined that 95% of all fields in the SPECj
applications are assigned less than 100,000 times per second. Using these numb
individual evaluation times, our performance model predicts that selection queries
have less than 43% overhead for 95% of all fields in the SPECjvm98 applications. 
complicated join queries are less efficient but still practical for small query domain
programs with infrequent queried field updates.

2 Query Model and Examples

Dynamic query-based debugging uses the query model proposed in QBD [LHS97
query syntax is as follows:

<Query> ::== <DomainDeclaration> { ; <DomainDeclaration> } .
<ConditionalExpression>

<DomainDeclaration> ::== <ClassName> [*] <DomainVariableName>
{ <DomainVariableName> }

The query has two parts: one or moreDomainDeclarations that declare variables of class
ClassName, and aConditionalExpression. The first part is called thedomain part and
the second theconstraint part. Consider anotherjavac query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd

The first part of the query defines thesearch domain of the query, using universal
quantification. The domain part of the above example should be read as “fo
FieldExpressionsfe and all FieldDefinitionsfd...”. FieldExpression is a class name and
its domain contains all instances of the class. If a “*” symbol in a domain declara
follows the class name (as in thejavac query discussed in the introduction), the doma
includes all objects of subclasses of the domain class, otherwise the domain co
only objects of the indicated class itself.
The second part of the query specifies the constraint expression to be evaluated fo
tuple of the search domain. Constraints are arbitrary Java conditional expressio
defined in the Java specification §15.24 [GJS96] with certain syntactic restrictions
disallow variable increments which have no semantic meaning in a query. We curr
also disallow array accesses but plan to implement them in the future. Constrain
contain method invocations; we assume that these methods are side effect free.
Semantically, the expression will be evaluated for each tuple in the Cartesian prod
the query’s individual domains, and the query result will include all tuples for which
expression evaluates to true (similarly to an SQL select query). Conceptually
dynamic debugger reevaluates a query after the execution of every bytecode, en
that no result changes are unnoticed. The debugger stops the program whene



ossible
 part
eeval-

with

uery

race

cts

ith

uery,

ules.
 and
ject

an be
result changes. In reality, the debugger reevaluates the query as infrequently as p
without violating these semantics. In addition, the debugger will reevaluate only the
of the query that changed since the last evaluation. We describe the incremental r
uation technique in detail in section 3.4.1.
We refer to queries with a single domain variable asselection queries; following
common database terminology, we call the rest of the queriesjoin queries because they
involve a join (Cartesian product) of two or more domain variables. Join queries 
equality constraints only (e.g.,p1.x == p2.x) are hash joins because they can be
evaluated more efficiently using a hash table [LHS97].

2.1 Examples
We now discuss examples of queries that illustrate the need for dynamic q
debuggers.

2.1.1 Javac Compiler
What are examples of inter-object constraint violations that may be difficult to t
back to their origins? We have already discussed one possible error in thejavac Java
compiler in the introduction. Another error that could occur injavac involves the
relationship betweenFieldExpression andFieldDefinition objects. Consider a situation
where aFieldExpression object no longer refers to theFieldDefinition object that it
should reference. Due to an error, the program may create twoFieldDefinition objects
such that theFieldExpression object refers to one of them, while other program obje
reference the otherFieldDefinition object (Figure 2). In other words,javac maintains a

constraint that aFieldExpression object that shares the type and the identifier name w
a FieldDefinition object must reference the latter through thefield field. We can detect a
violation of this constraint using the following query:

FieldExpression fe; FieldDefinition fd.
fe.id == fd.name && fe.type == fd.type && fe.field != fd

This complicated constraint can be specified and checked with a simple dynamic q
but it would be difficult to verify using conditional breakpoints.

2.1.2 Ideal Gas Tank Example
Another program we examined is an applet simulating a tank with ideal gas molec
Though this applet is a simple simulation of gas molecules moving in the tank
colliding with the tank walls and each other, it has some interesting inter-ob
constraints. First, all molecules have to remain within the tank, a constraint that c
specified by a simple selection query:

Figure 2. Another error injavac AST

refers to
FieldDefinition 2

FieldDefinition 1

should refer toFieldExpression 1

field
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Molecule* m. m.x < 0 || m.x > X_RANGE || m.y < 0 || m.y > Y_RANGE

Another constraint requires that molecules not occupy the same position as 
molecules, and the following query checks this constraint:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2

This constraint is interesting because its violation is a transient failure. Tran
failures disappear after some period of time, so even though the program behaves
ently than the programmer expected, queries will not be able to detect failures if
are asked too late. The molecule collision error is such a transient failure—it
disappear as the molecules continue to move. However, the applet will behave e
ously: for example, molecules that should have collided with each other will p
through each other. Dynamic queries are necessary to find transient failures
delayed query reevaluation may fail to detect the error entirely.

3 Implementation

We have implemented a Java dynamic query-based debugger in pure Java. Java c
a number of features that simplified the implementation. We used the ability to w
custom class loaders [LB98] to perform load-time code instrumentation. Ja
bytecode class files proved simple to instrument. The debugger creates custom
evaluation code by using load-time code generation. The debugger can be por
other languages (e.g. Smalltalk) that have an intermediate level format simila
bytecodes.

3.1 General Structure of the System
Figure 3 shows a data-flow diagram of the dynamic query-based debugger. To de
program, the user runs a standard Java virtual machine with a custom class load
custom class loader loads the user program and instruments the bytecodes load
adding debugger invocations for each domain object creation and relevant 
assignment. The class loader also generates and compiles custom debugger cod
loading, the Java virtual machine executes the instrumented user program. Whe
the program reaches instrumentation points, it invokes the custom debugger 
which calls other debugger runtime libraries to reevaluate the query and to gen
query results. The debugger currently does not handle multithreaded code.

The rest of this section discusses the most important parts of the debugger in
detail: how the debugger instruments a Java program, what parts it instruments, an
it evaluates a query.

Figure 3. Data-flow diagram of dynamic query-based debugger

Java program

Query string
and change set

Custom
debugger code

Instrumented
Java program

Custom
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3.2 Java Program Instrumentation
To enable a dynamic query for a program, the user specifies a query string
debugger then instruments class files to invoke the debugger after all events tha
change the result of the query. The debugger finds assignments to the fields refe
in the query change set (section 3.3) and inserts debugger invocations after each
them. The system also inserts debugger invocations after each call to a construct
domain object.
Figure 4 shows an example of the instrumentation process for a Java metho
instrument class files, the loader transforms them in memory into a malleable fo
using modified class file handling tools borrowed from the BCA class library [KH9
Then the loader finds allputfield bytecodes that assign to the fields of interest—like fie
x in Figure 4—and replaces theseputfield bytecodes withinvokestatic bytecodes
invoking debugger code. The system also inserts such debugger invocations afte
call to a constructor of a domain object. When the debugger replaces aputfield bytecode
with aninvokestatic call, it also inserts the reference to the customdebug method of the
DebuggingCode class into the constant pool of the instrumented class. The cus
method takes two arguments: the object that theputfield would have updated—a
Molecule object in the example—and thenewValue value to be assigned to the objec
field. These objects are already on the stack before execution of theputfield, so they will
be correctly passed as arguments to thedebug method, and the debugger does no sta
manipulation of the instrumented method. Since the originalputfield has been replaced
by theinvokestatic bytecode, the customdebug method performs the assignment orig
nally executed by theputfield. The debugger determines the name of the assigned 
and the correct types of objects and values from the class file’s constant pool. 
instrumentation, the class loader transforms the code back into the class file form
passes the image to the defaultdefineClass method.
The class loader instruments assignments and object constructors that influen
query result. The next section describes how the debugger determines which a
ments and constructors to instrument.

3.3 Change Monitoring
The dynamic query debugger updates the query result every time the debugged pr
performs an operation that may affect the query result. Thus, the program b
debugged has to invoke the debugger after every event that could change the
result. The query result may change because some object assigns a new value to
its fields or because a new object is constructed. However, not all field assignmen
object creations affect the query. We call the set of constructors and object field a
ments affecting the results of a query the query’schange set. Though we can use all
assignments and all constructors as a conservative change set for any query, 
interested in a minimal change set for efficient query evaluation. Such a chang
contains only constructors of domain objects and assignments to domain object
referenced in a query.
Consider theMolecule query:

Molecule* m1 m2. m1.x == m2.x && m1.y == m2.y && m1 != m2
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The change set of this query consists of the constructors of theMolecule class and its
subclasses as well as assignments toMolecule fields x and y. Assignments to other
molecule fields such ascolor do not belong to the change set.
The change set of a query tells the class loader what assignments and constru
should instrument. The debugger tracks all domain objects by maintaining do
object collections. Every time a domain object is created, the program invoke
debugger which places the new domain object into its domain collection. The deb
uses the domain collection in query evaluations to iterate through all domain objec
maintain query correctness and to facilitate garbage collection, the debugger s
allow the garbage collector to delete dead objects from domain collections. While
behavior can be implemented using weak pointers, we have not done so yet.
The change set of a query becomes complicated if constraints contain a chain of
ences. Consider a query for the SPECjvm98 ray tracing program:

IntersectPt ip. ip.Intersection.z < 0

The Intersection field is aPoint object, and the query result depends on itsz value. The
query result may change if thez value changes, or if a new value is assigned to 
Intersection field. Furthermore, thePoint object referenced by theIntersection field may
be shared among multiple domain objects. In this case, a change in onePoint object can
affect multiple domain objects. A chain of references also occurs when a do
instance method invokes methods on objects referenced in its fields, and these m
in turn depend on the fields of the receiver. Tracking which objects accessed thro
chain of field references influence which domain objects becomes a complicated
for example, to do it efficiently, nested objects need to point back to the domain ob
that reference them. To simplify the prototype implementation, we support only
explicit chains of references in the query, and we do not handle methods that a
chains of references. Our debugger rewrites the query by splitting the chain into s
level accesses and by adding additional domains and constraints. For example, 
tracing query above is rewritten as:

IntersectPt ip; Point* __Intersection.
ip.Intersection == __Intersection && __Intersection.z < 0

Chain reference splitting adds overhead by introducing additional joins into the q
but it also allows users to ask more complex queries. The overhead can be an o

Figure 4. Java program instrumentation

...
x += ...;
...

...
22: iadd
23: putfield 37
26: aload_0
...

Compile

...
22: iadd
23: invokestatic debug
26: aload_0
...

public final class DebuggingCode implements RunTimeCode {
public static void debug(Molecule updatedObject, int newValue) {
... updatedObject.x = newValue; // replaces putfield 37

QueryTool.runTool(updatedObject); // invokes query evaluator
}

}

Load and instrument
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magnitude when a selection query is rewritten as a join query. We do not handle 
methods, because their debugging is outside the scope of a Java debugger.
To summarize, we use the change set of the query to instrument the Java progra
instrumented program calls the debugger after every event that could change the
of the query, and the debugger reevaluates the query during each call.

3.4 Overview of Query Execution
In this section we describe what happens after an instrumented event occurs 
debugged program. Whenever the program invokes the debugger, it passes the
involved in the event. If the event is a field assignment, the program also passes th
value to be assigned to the field. Figure 5 shows the control flow of the query exec
First, the debugger checks whether the changed object is a domain object. Con
query that findsId objects with a negative type code:

Id x. x.type < 0

Here,Id is a subclass of theExpression class, and thetype field is defined inExpression.
Thus, the program may invoke the debugger when thetype field inherited from the
Expression class is assigned in an object of anotherExpression subclass. For example,
the program invokes the debugger after assigning thetype field in an
ArithmeticExpression object. This object shares thetype field with the domain class
objects, but it does not belong to the query domain, so the debugger immediately r
to the execution of the user program without reevaluating the query.

If the object passes the domain test, the debugger checks whether the value
assigned to the object field is equal to the value previously held by the field.
example, some molecules do not move in the ideal gas simulation, yet their coord
are updated at each simulation step. Such assignments do not change the resu
query and can be ignored by the debugger*. The debugger does not perform this test
the invoking event is an object creation.
After these two tests, the debugger starts reevaluating the query. Our previous wo
non-incremental query-based debuggers [LHS97] contained a query evalu
algorithm similar to the evaluation of a relational database join coupled with a selec
The dynamic query-based debugger improves upon the previous algorithm by 
incremental reevaluation as discussed below.

3.4.1 Incremental Reevaluation
When the program invokes the debugger, it passes the changed object to the de
From the properties of our change sets, we know that this object is the only objec
changed since the last query evaluation. Consequently, a full reevaluation of the 
for all domain objects is unnecessary. We use incremental reevaluation techn

* This test is just one example of tests that quickly verify whether the query result changed due to the assignment.
currently investigating more sophisticated tests that detect more query-invariant assignments.

Same value
assignment test

Instrumented
 event Domain test

Query
reevaluation

Result
update

Figure 5. Control flow of query execution
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developed for updates of materialized views in databases [BC79, BLT86] to spe
query execution. Consider a query, a join of three domainsA * B * C, e.g.,

A a; B b; C c.  a.x == b.y && b.z < c.w

The “*” symbol denotes a Cartesian product with some selection constraint; the
symbol below denotes set union. If an object of domainB changes, the new result of the
query is

A * (B + ∆B) * C = (A * B * C ) + (A * ∆B * C)

The first part of the result is the result of the previous query evaluation. The debu
stores this result—usually empty for assertion queries—and does not need to reev
it. The second part of the result contains only the changed object (∆B) of domainB
combined with objects of the other domains. The debugger evaluates the change
in the same way as it would evaluate the whole query. Figure 6 shows an increm
evaluation of changes in the query result. The execution starts with the changed 
∆B passed from the user program. Because this is the only object for which the deb
evaluates the first constraint, the intermediate result is likely to be empty. In genera
size of intermediate results is much smaller in the incremental evaluation, speedi
the query evaluation. If intermediate results are not empty, the debugger continu
evaluation in the usual manner and produces an incremental result(A * ∆B * C). The
system then merges the result with the previous result to form the complete query r

The query evaluation is further optimized by finding efficient join orders and by u
hash joins as described in [LHS97]. Because sizes of domains change during pr
runtime and we cannot efficiently determine the selectivities of constraints, we
simple heuristics for join ordering: execute selections first, equality joins next, 
inequality constraints last.

3.4.2 Custom Code Generation for Selection Queries
Constraints of selection queries are usually very simple and can be evaluated ver
Instead of performing the general query execution algorithm described in section
which goes through numerous general steps and calls a number of method
debugger can evaluate just the few tests necessary to check the selection cons
Because these tests depend on the query asked, the code for their evaluation ha
generated at program load time. During the loading of the user program, the deb
generates a Java class with adebug method. We show such a method in Figure 7 for t
query

Molecule1 m. m.x > 350

The first three statements of the method contain the code common for both unopti
and optimized versions. This code performs the domain test and the same 
assignment test described in section 3.4. The optimized code that follows evaluat
selection constraint on the changed object and calls the debugger runtime only

Collection A

Figure 6. Incremental query evaluation

Changed object ∆B Collection (A * ∆B)Instrumented
assignment

Collection (A * ∆B * C)

+
Collection (A * B * C)

Collection C
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query has a non-empty result. The debugger uses thedebug method as an entry point
that the user program calls when it reaches instrumentation points. With custom
generated, thedebug method contains all code needed to evaluate a selection, so
reevaluation costs only one static method call. Furthermore, thedebug method—a
member of afinal class—may even be inlined into the instrumentation points by a 
compiler. We could also inline the bytecodes into the instrumented method.

4 Experimental Results

Ideally, a test of the efficiency of a dynamic query-based debugger would use
debugging queries asked by programmers using the tool for their daily work. Th
we tried to predict what queries programmers will use, each debugging situati
unique and requires different queries. To perform a realistic test of the query-b
debugger without writing hundreds of possible queries, we selected a number of q
that in complexity and overhead cover the range of queries asked in debugging 
tions. The selected queries contain selection queries with low and high cost const
The test also includes hash-join and nested-join queries with different domain size
queries check programs that range from small applets to large applications an
stress-tests) microbenchmarks. These applications invoke the debugger 
frequencies ranging from low to very high, where a query has to be evaluated at 
iteration of a tight loop. Consequently, the experimental results obtained for the te
should indicate the range of performance to be expected in real debugging situat
For our tests we used an otherwise idle Sun Ultra 2/2300 machine (with two 300 
UltraSPARC II processors) running Solaris 2.6 and Solaris Java 1.2 with JIT com
(Solaris VM (build Solaris_JDK_1.2_01, native threads, sunwjit)) [Sun99]. Execution
times are elapsed times and were measured with millisecond accuracy usin
System.currentTimeMillis() method.

4.1 Benchmark Queries
To test the dynamic query-based debugger, we selected a number of struct
different queries (Table 1) for a number of different programs (Table 2):

• Queries 1 and 13 check a small ideal gas tank simulation applet that spends
of the time calculating molecule positions and assigns object fields very in

Figure 7. Selection evaluation using custom code

public final class DebuggingCode implements RunTimeCode {
public static void debug (Molecule updatedObject, int newValue) {
// Code common for both general and optimized versions
if (! (updatedObject instanceof Molecule1))

{ updatedObject.x = newValue; return; }
if (updatedObject.x == newValue)  return;
updatedObject.x = newValue;
// Instead of calling general query evaluation method,
// evaluate constraint here
if (updatedObject.x > 350) QueryTool.outputResult(updatedObject);

}
}
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quently. It has 100 molecules divided amongMolecule1, Molecule2 and
Molecule3 classes. The application performs 8,000 simulation steps.

• Queries 2 and 14 check theDecaf Java subset compiler, a medium size progra
developed for a compiler course at UCSB. TheToken domain contains up to
120,000 objects.

• Query 3 checks theJess expert system, program from the SPECjvm98 su
[SPEC98].

• Queries 4–10, and 16–17 check thecompress program from the SPECjvm98
suite. Our queries reference frequently updated fields ofcompress.

• Queries 11–12 and 15 check the ray tracing program from the SPECjvm98 
ThePoint domain contains up to 85,000 objects; theIntersectPt domain has up to
8,000 objects.

Table 1. Benchmark queries

Query

S
lo

w
do

w
n

Invocation
frequency
(events / s)

1. Molecule1 z. z.x > 350 1.02 15,000

2. Id x. x.type < 0 1.11 16,000

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 1.25 169,

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 1.18

1,900,000
5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 1.27

6. spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 1.37

7. spec.benchmarks._201_compress.Output_Buffer z. z.complexMathOutCnt(0) 5.83

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 1.18 933

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 0 1.10
196,000

10. spec.benchmarks._201_compress.Compressor z. z.complexMathOutCount(0) 1.83

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 1.23 787,0

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.98 2,300,

13. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join)

2.13 54,000

14. Lexer l; Token t. l.token == t && t.type == 27 (120,000x600 hash join) 3.43 25,00

15. spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

229 350,000

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0 (1x1 hash join)

157 1,500,000

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count  (1x1 join)

77 2,600,000

18. Test5 z.  z.x < 0 6.4 42,000,000

19. TestHash5 th; TestHash1 th1.  th.i == th1.i (1x20 hash join) 228
40,000,000

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 930
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• Queries 18–20 check artificial microbenchmarks. These microbenchmarks s
test debugger performance by executing tight loops that continuously up
object fields.

Structurally, queries can be divided into the following classes:
• Queries 1–12 and 18 are simple one-constraint selection queries with a 

range of constraint complexities. For example, query 4 has a very simple low
constraint that compares an object field to an integer. The more costly cons
in query 5 invokes a method to retrieve an object field. Another costly alterna
constraint (query 6) invokes a comparison method that takes a value 
parameter. Finally, the most costly constraint in query 7 performs expen
mathematical operations before performing a comparison. Queries 8 and 9
very similar constraints, but differ 4.8 times in debugger invocation frequency
this paper, by “debugger invocation frequency” we mean the frequency of ev
in the original program that would trigger a debugger invocation, i.e., 
invocation frequency for a debugger with no overhead. Query 12 compare
parameter of the method to the distance of a point to the origin. This q
combines costly mathematical operations with increased debugger invoc
frequency, because its result depends on all three coordinates ofPoint objects.

• Queries 13–17 and 19–20 are join queries. Queries 13–16 and 19 can be eva
using hash joins. The evaluation of queries 17 and 20 has to use nested-loop
For join queries, the slowdown depends both on the debugger invoca
frequency and sizes of the domains. Queries 13–14 have low invoca
frequencies; queries 15–17, 19–20 have high invocation frequencies. Queri
and 15 have large domains.

In the next section, we discuss the performance of these queries. Section 4.3
discusses the efficiency benefits of incremental evaluation, custom selection cod
unnecessary assignment detection.

4.2 Execution Time
Figure 8 shows the program execution slowdown for application programs w
queries are enabled. The slowdown is the ratio of the running time with the query a
to the running time without any queries. For example, the slowdown of query 3 indic
that theJess expert system ran 25% slower when the query was enabled.
Overall the results are encouraging. All selection queries except query 7 have over
of less than a factor of 2. The median slowdown is 1.24. We expect overhea
common practical selection queries to be in the same range as our experimental q
the performance model discussed in section 5 supports this prediction.

Table 2. Application sizes and execution times

Application Size (Kbytes) Execution time (s)

1. Compress  17.4 50

2. Jess 387.2 22

3. Ray tracer 55.7 17

4. Decaf 55 15

5. Ideal gas tank 14.3 57
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Join queries have overheads ranging from 2.13 to 229 for applications. Hash q
(which can be used for equality joins) are efficient for queries 13–14, and other join
practical for query 13 in which the domains contain only 33 objects each. Queries
17 have large overheads because of frequent invocations (e.g., 2.6 million time
second for query 16) and large domains. Join query performance is acceptable 
domains are small, and the program invokes the debugger infrequently. For 
domains and frequently invoked queries, the overhead is significant.
Microbenchmark stress-test queries 18–20 show the limits of the dynamic query-b
debugger. The benchmark updates a single field in a loop 40 million times per se
When queries depend on this field, the program slowdown is significant. Sele
query 18 has a slowdown factor of 6.4, the hash-join evaluation has a slowdown o
times, and the slower nested-loop join that checks twenty object combinations in
evaluation has a slowdown of 930 times.
Though the microbenchmark results indicate that in the worst case the debugg
incur a large slowdown, these programs represent a hypothetical case. Such fr
field updates are possible only with a single assignment in a loop. Adding a
additional operations inside the loop drops the field update frequency to 3 million t
per second which is more in line with the highest update frequencies in real prog
For such update frequencies, the slowdown is much lower as indicated by query 
discuss the likelihood of high update frequencies in section 5.
Figure 9 shows the components of the overhead:

• Loading time, the difference between the time it takes to load and instrum
classes using a custom class loader, and the time it takes to load a program 
normal execution.

• Garbage collection time, the difference between the time spent for garba
collection in the queried program and the GC time in the original program.
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Figure 8. Program slowdown (queries 15—20 not shown)

5.83

The slowdown is the ratio of the running time with the query active to the running time without any queries. For exa
the slowdown of query 3 indicates that the Jess expert system ran 25% slower when the query was enabled.
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• First evaluation time,the time it takes to evaluate the query for the first time. F
join queries, the first query is the most expensive, because it sets up data 
tures needed for future query reevaluations. We separate this time from th
of the query evaluation time, because it is a fixed overhead incurred only on

• Evaluation time, the time spent evaluating the query. This component does
include the first evaluation time. The first evaluation time and the evaluation t
together compose thetotal evaluation time.

Figure 9 shows the components of the overhead. For example, 3% of the overh
query 14 is spent on instrumentation, and 34% on garbage collection. The total e
ation time is 63% of the overhead, with 3% spent in the first evaluation, and 60% 
in subsequent reevaluations. On average, the largest part of the overhead is the
ation time (75.5%), while loading takes only 17% and garbage collection has a n
gible overhead (less than 7%) in most cases*. The loading overhead becomes a sign
icant factor when the loaded class hierarchy is large, as in query 3 on theJess system.
The loading overhead also takes a larger proportion of time when query reevalua
are infrequent or fast as in queries 1, 2, 9, and 11. Garbage collection was not a 
icant factor except in query 14 which creates 120,000 token objects, and in qu
which has such a small absolute overhead that even a slight increase in GC and l
time becomes a large part of the overhead. Since the evaluation component dom
the overhead, especially in high-overhead, long-running queries, evaluation optim
tions are very important for good performance. We discuss some optimizations al
reflected in this graph in the next section.

4.3 Optimizations
To evaluate the benefit of optimizations implemented in the dynamic query-b
debugger, we performed a number of experiments by turning off selected optimiza

4.3.1 Incremental Reevaluation
The dynamic query debugger benefits considerably from the incremental evaluat
queries. We disabled incremental query evaluation and reran all queries. Table 3 

* Experiments were run with 128M heap, a factor that decreased the GC overhead.
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Figure 9. Breakdown of query overhead as a percentage of total overhead
For example, 3% of query 14 overhead is spent on instrumentation, 34% on garbage collection, 3% in the first eva
and 60% in subsequent reevaluations.
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the results of this experiment. The first column of numbers in the table shows the
of non-incremental query running time to the running time of the original program.
second column shows the ratio of non-incremental query running time to the run
time of fully optimized incremental query evaluation. For example, query 2 had a fa
of 613 overhead and ran for 2.5 hours. In contrast, the same query ran 554 times
using the incremental reevaluation, had only 11% overhead and finished in 
seconds. Query 1 was the only query that the non-incremental debugger could ev
in a reasonable time. The overheads of all other queries were enormous; some pro
would have run for more than a day. (For queries 3–12 and 14–17, we stopped 
reevaluation after the first 100,000 evaluations and estimated the total overh
Despite the large overall overhead, the individual non-incremental query evaluation
reasonably fast. For example, even for large join queries 14 and 15, a single query
ation only took about 50 ms.

Table 3. Overhead of non-incremental evaluation

Query
Slowdown
versus non-

instrumented

Slowdown
versus

optimized

1. Molecule1 z. z.x > 350 1.19 1.16

2. Id x. x.type < 0 613 554

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 7135 5,72

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 475 402

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 474 373

6. spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 587 428

7. spec.benchmarks._201_compress.Output_Buffer z. z.complexMathOutCnt(0) 513 88

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 275 233

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 0 37 33

10. spec.benchmarks._201_compress.Compressor z. z.complexMathOutCount(0) 40 2

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 10,500 8,496

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 17,800 8,97

13. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join)

21.96 10.3

14. Lexer l; Token t. l.token == t && t.type == 27 (120,000x600 hash join) 1,973 576

15. spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

12,400 54

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0  (1x1 hash join)

1,708 11

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count (1x1 join)

697 9

18. Test5 z.  z.x < 0 5,213 821

19. TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join) 1,491 6.6

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 5,602 6.02
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The join queries oncompress have an overhead of only 9–11 compared to the inc
mental optimized version. These joins did not benefit much from incremental evalu
and its optimizations because the domains of these joins contain only a single ob
Overall, the experiments with non-incremental evaluation of queries show that in
mental evaluation is imperative, greatly reducing the overhead and making a 
larger class of dynamic queries practical for debugging.

4.3.2 Custom Generated Selection Code
To estimate the benefit of generating custom code as discussed in section 3.4.2, 
all selection queries with the optimization disabled. The results of the experimen
shown in Table 4. The first column of numbers shows the slowdown of the unoptim
version compared to the original program. The second column indicates the slow
of the unoptimized version compared to the optimized version. For example, qu
ran 68.5 times slower than the original program and 58 times slower than the optim
query.

The ideal gas tank applet andDecaf compiler queries did not benefit from this optim
zation, because these programs reevaluate the query infrequently, and the optim
benefit is masked by variations in start-up overhead. All other queries show signifi
speedups with the optimization enabled. The benefit of the optimization increases
the frequency of debugger invocations; overall, custom generated selection 
produces a median speedup of 15.

4.3.3 Same Value Assignment Test
Before evaluating a query after a field assignment, the debugger checks wheth
value being assigned to the object field is equal to the value previously held by the

Table 4. Benefit of custom selection code (selection queries only)

Query
Slowdown
versus non-

instrumented

Slowdown
versus

optimized

1. Molecule1 z. z.x > 350 1.05 1.03

2. Id x. x.type < 0 1.46 1.34

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 11.70 9.26

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0 68.5 58

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 64 51

6. spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 65 47

7. spec.benchmarks._201_compress.Output_Buffer z. z.complexMathOutCnt(0) 69.6 12

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 43.6 37

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 0 10.5 9.6

10. spec.benchmarks._201_compress.Compressor z. z.complexMathOutCount(0) 11 6

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 21 15

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 61 31

13. Test5 z.  z.x < 0 1,952 307



by the

ing on
thers

 to the

ther
 of a
d fast,
 Only
reduce
y that
cessary

nly one
 most
 or the

cted a
ugger
n be

n
ents
Such assignments do not change the result of the query and can be ignored 
debugger.
Table 5 shows that the number of unnecessary assignments differs highly depend
the programs or fields. While some programs and fields do not have them at all, o
have from 7% to 95% of such assignments. Only the ideal gas tank simulation, theJess
expert system, and the ray tracing application have unnecessary assignments
queried fields.

To check the efficiency of the same-value test, we disabled it while leaving all o
optimizations enabled. The results show that the test does not make much
difference in query evaluation for most queries. For selections that can be evaluate
the cost of the same-value test is similar to the cost of the full selection evaluation.
when the selection constraint is costly (as in query 4), does the same-value test 
the overhead. For joins, the cost reduction is significant for the ideal gas tank quer
contains 54% unnecessary assignments. For other joins, the percentage of unne
assignments is too low to make a difference.
To summarize, the test whether an assignment changes a value of a field costs o
extra comparison per debugger invocation. It does not change the overhead for
programs, but saves time when the number of unnecessary assignments is large
query expression is expensive.

5 Performance Model

To better predict debugger performance for a wide class of queries, we constru
query performance model. The slowdown depends on the frequency of deb
invocations and on the individual query reevaluation time. This relationship ca
expressed as follows:

T = Toriginal (1 + Tnochange * Fnochange + Tevaluate * Fevaluate)

This formula relates the total execution time of the program being debuggedT and the
execution time of the original programToriginal using frequencies of field assignments i
the program and individual reevaluation times. The model divides field assignm
into two classes:

Table 5. Unnecessary assignment test optimization
(excluding queries with no unnecessary assignments)

Query
Slowdown

versus
optimized

%
unnecessary
assignments

1. Molecule1 z. z.x > 350 0.99 95%

2. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 0.997 7%

3. spec.benchmarks._205_raytrace.Point p. p.x == 1 0.988 15%

4. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 1.16 40%

5. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join)

1.61 54%

6. spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

1.02 15%
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• Assignments that do not change the value of a field. These assignments d
change the result of the query. The debugger has to perform only two com
isons in this case—a domain test and the value equality test, so it spends a
amount of time (Tnochange) in such invocations independent of the query. W
calculatedTnochange by running a query on a program that repeatedly assigned
same value to the queried field; for the machine/JVM combination we u
Tnochange = 66 ns.

• Assignments that lead to the reevaluation of a query. The time to reevalu
queryTevaluate for such an assignment depends on the query structure and o
cost of the query constraint expression. For each query, we calculateTevaluate by
dividing the additional time it takes to run a program with a query into the num
of debugger invocations. This calculation gives an exact result for programs
have no unnecessary assignments (Fnochange = 0). For example, for query 18
Tevaluate is 131ns.Tevaluate for query 4 is 140 ns, which is close to the time 
evaluate a similar query in a microbenchmark. When constraints are more c

Table 6. Frequencies and individual evaluation times

Query
Fevaluate

(assignments

per second)

Tevaluate
(µs)

1. Molecule1 z. z.x > 350 N/A N/A

2. Id x. x.type < 0 16,000 3.73

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == -1 169,000 3

4. spec.benchmarks._201_compress.Output_Buffer z. z.OutCnt < 0

1,900,000

0.140

5. spec.benchmarks._201_compress.Output_Buffer z. z.count() < 0 0.20

6. spec.benchmarks._201_compress.Output_Buffer z. z.lessOutCnt(0) 0.28

7. spec.benchmarks._201_compress.Output_Buffer z. z.complexMathOutCnt(0) 3.7

8. spec.benchmarks._201_compress.Compressor z. z.in_count < 0 933,000 0.1

9. spec.benchmarks._201_compress.Compressor z. z.out_count < 0
196,000

0.488

10. spec.benchmarks._201_compress.Compressor z. z.complexMathOutCount(0) 4.2

11. spec.benchmarks._205_raytrace.Point p. p.x == 1 787,000 0.486

12. spec.benchmarks._205_raytrace.Point p. p.farther(100000000) 2,300,000 0.4

13. Molecule1 z; Molecule2 z1.
z.x == z1.x && z.y == z1.y && z.dir == z1.dir && z.radius == z1.radius (33x33 hash join)

N/A N/A

14. Lexer l; Token t. l.token == t && t.type == 27 (120,000x600 hash join) 25,000 56.8

15. spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
p.z == ip.t && p.z < 0 (85,000x8,000 hash join)

350,000 546

16. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt == z.InCnt && z1.OutCnt < 100 && z.InCnt > 0 (1x1 hash join)

1,500,000 60

17. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1.
z1.OutCnt < 100 && z.out_count > 1 && z1.OutCnt / 10 > z.out_count (1x1 join)

2,600,000 51

18. Test5 z.  z.x < 0 42,000,000 0.131

19. TestHash5 th; TestHash1 th1. th.i == th1.i (1x20 hash join)
40,000,000

5.7

20. TestHash5 th; TestHash1 th1. th.i < th1.i (1x20 join) 23
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Tevaluate increases; for example, for the highest cost selection query (query 1
is 4.26µs. It is even higher for join queries where it depends on the size
domains in joins; for example, for query 16 it is 60µs, and for query 15 which
has large domains, it is 546µs.

Using the values of reevaluation times and the frequency of assignments to the fie
the change set, we can estimate the debugging overhead. First, we determine the
field assignment frequency.

5.1 Debugger Invocation Frequency
Debugger invocation frequency is an important factor in the slowdown of progr
during debugging. The program invokes the debugger after object creation and
field assignments. For most queries, the field assignment component dominat
debugger invocation frequency. To find the range of field assignment frequenci
programs, we examined the microbenchmarks and the SPECjvm98 application 
We instrumented the applications to record every assignment to a field. Table 7 s
results of these measurements.

The maximum field assignment frequency in microbenchmarks is 40 million ass
ments per second, but that would be difficult to reach in an application becaus
microbenchmarks contain a single assignment inside a loop. Thecompress program has
the highest field assignment frequency in the SPECjvm98 application suite, 1.9 m
assignments per second. Other SPEC applications, as well as theDecaf compiler and
the ideal gas tank applet, have much lower maximum field assignment frequencie
Figure 10 shows the frequency distribution of field assignments in the SPECjv
applications. The left graph indicates how many fields have an assignment freque
the range indicated on the x axis. For example, only four fields are assigned be
one million and two million times per second. The right graph shows the cumula
percentage of fields that have assignment frequencies lower than indicated on the
95% of all fields have fewer than 100,000 assignments per second.
To predict the overhead of a typical selection query, we can now calculate the ove
as a function of invocation frequency. Figure 11 uses the minimum (130 ns)

Table 7. Maximum field assignment frequencies

Application
Maximum frequency

(field assignments per second)
Original program
execution time (s)

1. Compress 1,900,000 50.4

2. Jess 169,000 22.45

3. Db 254 75

4. Javac 217,000 38

5. Mpegaudio 495,000 57.4

6. Jack 27,000 27

7. Ray tracer 787,000 17

8. Decaf 56,000 15

9. Ideal gas tank 23,150 57

10. Microbenchmark 40,000,000 2.4
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maximum (4.26µs) values ofTevaluate from Table 6 to plot the estimated selection que
overhead for a range of invocation frequencies. For example, a selection query on 
updated 500,000 times per second would have an overhead of 6.5% if its reeval
time was 130 ns. If the reevaluation time was 4.26µs, the overhead will be a factor o
3.13. The graph reveals that selection queries on fields assigned less than 100,00
a second—95% of fields—have a predicted overhead of less than 43% even for th
costly selection constraint. For less costly selections, the query overhead is acce
for all fields.

In the current model, the evaluation timeTevaluate models all sources of query overhead
This time includes the actual reevaluation time as well as the additional gar
collection time, the class instrumentation cost, and the first evaluation cost. It wou
more exact to model each of these overheads separately. However, for long ru
programs the evaluation time dominates the total cost, so the values ofTevaluate are
likely to fall in the range we have covered.
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Figure 10. Field assignment frequency in SPECjvm98
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Figure 11. Predicted slowdown
The graph shows the predicted overhead as a function of update frequency. For example, the predicted overhead
low-cost selection query on a field updated 500,000 times per second is 6.5%; the predicted overhead of a high-
query with the same frequency is a factor of 3.13.
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In summary, the performance model predicts that most selection queries will hav
than 43% overhead. The model can be used as a framework for concrete ove
predictions and future model refinements.

6 Queries with Changing Results

So far we discussed using dynamic queries for debugging, where the program st
soon as the query returns a non-empty result. However, programmers can als
queries to monitor program behavior. For example, in the ideal gas tank simula
users may want to monitor all molecule near-collisions with a query:

Molecule* m1 m2. m1.closeTo(m2) && m1 != m2

Programmers may use this information to check the frequency of near-collisions, to
out if near-collisions are handled in a special way by the program, or to check the c
spondence of program objects with the visual display of the simulation. In this cas
debugger should not stop after the result becomes non-empty, but instead s
continue executing the program and updating the query result as it changes.
monitoring, perhaps coupled with visualization of the changing result, can help u
understand abstract object relationships in large programs written by other people
can a debugger support continuous updating of query results while the pro
executes?

The dynamic query-based debugger described above needs only a few chan
support monitoring queries. The basic scheme and the implementation of the dyn
query-based debugger discussed in section 3 remain the same. The only new com
of the debugger is a module that maintains the current query result. As discuss
section 3.4.1, the debugger reevaluates only the changed part of the query. C
quently, the result handling module must store the query result from the previous e
ation and then merge it with the new partial result. To achieve that, after query exec

Table 8. Benchmark queries with non-empty results

Query Slowdown

1. Molecule1 z. z.x < 200 1.05

2. Id x. x.type == 0 1.23

3. spec.benchmarks._202_jess.jess.Token z. z.sortcode == 0 1.3

4. spec.benchmarks._201_compress.Compressor z. z.OutCnt == 0 1.19

5. spec.benchmarks._201_compress.Compressor z. z.out_count == 0 1.09

6. Molecule1 z; Molecule2 z1. z.x < z1.x && z.y < z1.y (33x33 join) 1.47

7. Lexer l; Token t. l.token == t && t.type == 0 (120,000x600 hash join) 4.09

8. spec.benchmarks._205_raytrace.Point p; spec.benchmarks._205_raytrace.IntersectPt ip.
(p.z == ip.t) && (p.z > 100) (85,000x8,000 hash join)

212.4

9. spec.benchmarks._201_compress.Compressor z;
spec.benchmarks._201_compress.Output_Buffer z1. z1.OutCnt == z.out_count (1x1 hash join)

9.07

10. spec.benchmarks._201_compress.Input_Buffer z;
spec.benchmarks._201_compress.Output_Buffer z1. z1.OutCnt < z.InCnt (1x1 join)

127

11. Test5 z. z.x % 2 == 0 45
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the debugger deletes all tuples from the previous result that contain the changed d
object and inserts the new tuples generated by the incremental reevaluation.
Experiments with queries similar to the ones in Table 1 show that adding the q
result update functionality does not significantly change the query evaluation over
(Table 8). The only exception is the microbenchmark selection query 11 which up
the query result during each reevaluation. Consequently, the overhead of the se
increases from 6.4 times to 45 times, although part of this increase can be attribu
the more costly selection constraint. However, such frequent result updates are un
for most monitoring queries: programmers can only absorb infrequent result cha
so, if results change rapidly, the display will be unintelligible unless it is artificia
slowed down or used off-line.
To summarize, monitoring queries are useful for understanding and visual
program behavior. With slight modifications our debugger supports monitoring que
Unless the result changes very rapidly, the additional overhead of monitoring q
execution is insignificant when compared to similar debugging queries.

7 Related Work

We are unaware of other work that directly corresponds to dynamic query-b
debugging. The query-based debugging model and its non-dynamic implementatio
presented in a previous paper [LHS97].
Extensions of object-oriented languages with rules as in R++ [LMP97] provid
framework that allows users to execute code when a given condition is true. How
R++ rules can only reference objects reachable from the root object, so R++ wou
help to find thejavac error we discussed. Due to restrictions on objects in the rule, R
also does not handle join queries.
Sefika et al. [SSC96] implemented a system allowing limited, unoptimized selec
queries about high-level objects in the Choices operating system. The system dy
cally shows program state and run-time statistics at various levels of abstraction. U
our dynamic query-based debugger, the tool uses instrumentation specific to the
cation (Choices).
While no one has investigated the query-based debugging specifically, va
researchers have proposed a variety of enhancements to conventional deb
[And95, Cop94, DHKV93, GH93, GWM89, KRR94, Laf97, LM94, LN97, WG94
The debuggers most closely related to dynamic query-based debugging visualize 
relationships—usually references or an object call graph. Duel [GH93] displays 
structures by using user script code. HotWire [LM94] allows users to specify cus
object visualizations in constraint language. Look! [And95], Object Visuali
[DHKV93], PV [KRR94], and Program Explorer [LN97] provide numerous graphic
and statistical run-time views with class-dependent filtering but do not allow gen
queries. Our debugger can gather statistical data through queries with non-empty 
(“How many lists of size greater than 500 exist in the program?”) but does not dis
animated statistical views.
Visualizing debuggers gather information by either instrumenting the source 
[DHKV93, LM94] or by using program traces [KRR94, LN97]. A port of our debugg
to C++ would have to use one of these techniques. Laffra [Laf97] discusses v
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debugging in Java using source code instrumentation or JVM changes. We opted 
third method—class file instrumentation at load time. Consens et al. [CHM94, CMR
use the Hy+ visualization system to find errors using post-mortem event traces. De P
et al. [DLVW98] and Walker et al. [WM+98] use program event traces to visua
program execution patterns and event-based object relationships, such as m
invocations and object creation. This work is complementary to ours because it fo
on querying and visualizing run-time events while we query object relationships.
Dynamic query-based debugging extends work on data breakpoints [WLG93]—b
points that stop a program whenever an object field is assigned a certain value
postconditions and class invariants as provided in Eiffel [Mey88] can be thought 
language-supported dynamic queries that are checked at the beginning or e
methods. Unlike dynamic queries, they are not continuously checked, they ca
access objects unreachable by references from the checked class, nor can they
arbitrary methods. Dynamic queries could be used to implement class assertio
languages that do not provide them. The current implementation of dynamic qu
cannot use the “old” value of a variable, as can be done in postconditions. We vie
two mechanisms as complementary, with queries being more suitable for pro
exploration as well as specific debugging problems.
Software visualization systems such as BALSA [Bro88], Zeus [Bro91], TANG
XTANGO/POLKA [Sta90], Pavane [Rom92], and others [HKWJ95, Mos97, RC9
offer high-level views of algorithms and associated data structures. Software vi
ization systems aim to explain or illustrate the algorithm, so their view creation pro
emphasizes vivid representation. Hart et al. [HKR97] use Pavane for query-b
visualization of distributed programs. However, their system only displays sele
attributes of different processes and does not allow more complicated queries.
Dynamic queries are related to incremental join result recalculation in databases [B
BLT86]. We use the basic insights of this work to implement the incremental q
evaluation scheme. Coping with inter-object constraints in the extended ODMG m
[BG98] may require methods similar to dynamic query-based debugging.
Slicing [Wei81, Tip95] determines the program statements that affect a certain pro
point. It could be modified to determine the change sets of queries.

8 Conclusions

The cause-effect gap between the time when a program error occurs and the time
it becomes apparent to the programmer makes many program errors hard to fin
situation is further complicated by the increasing use of large class libraries and co
cated pointer-linked data structures in modern object-oriented systems. A misdir
reference that violates an abstract relationship between objects may remain 
covered until much later in the program’s execution. Conventional debugging met
offer only limited help in finding such errors. Data breakpoints and conditional bre
points cannot check constraints that use objects unreachable from the stat
containing the breakpoint.
We have described a dynamic query-based debugger that allows programmers 
queries about the program state and updates query results whenever the pr
changes an object relevant to the query, helping programmers to discover o
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relationship failures as soon as they happen. This system combines the following
features:

• An extension of query-based debugging to include dynamic queries. Not 
does the debugger check object relationships, but it determines exactly 
these relationships fail while the program is running. This technique closes
cause-effect gap between the error’s occurrence and its discovery.

• Implementation of monitoring queries. The debugger helps users to watch
changes in object configurations through the program’s lifetime. This funct
ality can be used to better understand program behavior.

The implementation of the query based debugger has good performance. Sel
queries are efficient with less than a factor of two slowdown for most queries meas
We also measured field assignment frequencies in the SPECjvm98 suite, and s
that 95% of all fields in these applications are assigned less than 100,000 time
second. Using these numbers and individual evaluation time estimates, our deb
performance model predicts that selection queries will have less than 43% overhe
95% of all fields in the SPECjvm98 applications. Join queries are practical w
domain sizes are small and queried field changes are infrequent.
Good performance is achieved through a combination of two optimizations:

• Incremental query evaluation decreases query evaluation overhead by a m
factor of 160, greatly expanding the class of dynamic queries that are practic
everyday debugging.

• Custom code generation for selection queries produces a median speedup
further improving efficiency for commonly occurring selection queries.

We believe that dynamic query-based debugging adds another powerful tool t
programmer’s tool chest for tackling the complex task of debugging. Our implem
tation of the dynamic query-based debugger demonstrates that dynamic queries 
expressed simply and evaluated efficiently. We hope that future mainstream debu
will integrate a similar functionality, simplifying the difficult task of debugging an
facilitating the development of more robust object-oriented systems.
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